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STATIC ANALYSIS TOOLS FOR EXPERT SYSTEMS*

Elissa Gilbert

Booz, Allen & Hamilton

1725 Jefferson Davis Highway

Arlington, Virginia 22202

Introduction

The idea of artificial intelligence has existed for decades, even before the term was coined at
the Dartmouth conference. This past decade saw this concept begin to be realized, as expert
systems emerged as a viable commercial technology. However, although expert systems began to
be used commercially, little attention was paid to the issue of testing these systems until recently.

This was a dangerous oversight. Expert systems are also known as rule-based programs,
and they = programs. The history of software engineering shows that more than half the cost of
software development occurs during testing and maintenance. There is little reason to expect less
expense from expert system software. Testing expert system software may be even more
expensive since there usually are no requirements or design documents to guide the testing.

There are two kinds of testing that can be used. Dynamic testing consists of running the
program on test cases and comparing the output produced with the output expected. Static testing
is concerned with examining the underlying structure of the program.

*To appear in Promedft of Test Technology Sympium II, 1989,



Static testing is particularly important for expert systems. Dynamic testing cannot valioate the
reasoning mechanism, only the results. Because expert systems are usually developed to mimic the
thinking of a human expert in an area in which there is no readily determined right or wrong
inswer, it is not enough that the system produce the right answer; it must produce the right answer
in the right way before the system caui be trusted. This means that the structure of the rule base,
which indicates the reasoning, must be verified. Static analysis provides a way to examine the
structure. Since the expert system's output depends on the inference mechanism as well as on the
rules, static analysis alone is not sufficient. It should be used as a complement to, not replacement
for, dynamic testing.

STATIC ANALYSIS TOOLS FOR TESTING, EVALUATING, AND
DEBUGGING EXPERT SYSTEMS

Several static analysis tools have been reported in the literature. This paper discusses the
techniques used in four recent tools. CHECK, described in [6], is the earliest of the tools
described here. It provides static analysis checks for the Lockheed expert system shell. EVA, the
Expert Systems Validation Associate, described in [91 is intended to be used for a variety of expert
system shells, such as KEE and ART. The Expert System Parsing Environment, ESPE, is a tool
for analyzing expert systems developed with !BM's Expert System Development Environment. It
was a research project at R.P.I., reported in [2, 3, 4, 5, 81. The Expert System Examiner, ESE, is
a tool developed by Booz, Allen, & Hamilton while testing expert systems for a government
agency. ESE is based on ESPE, and has been used to test three expert systems developed with
several different shells.

These four tools, developed independently (except for ESPE and ESE), share much in
common. All of these tools either implicitly or explicitly consider an expert system's rule base to
be a graph or network. In the graph of a rule base, there are nodes that represent rules and nodes
that represent the hypotheses that appear in the rules' premises and conclusions. There is an arc
from a hypothesis to each rule whose premise it appears in. There is an arc to a hypothesis from
each rule that asserts the hypothesis in its conclusion.

ESPE can plot the graph of the expert system. It can display the rules several ways. The
entire rule base can be graphed. Graphs involving only specified nodes can be plotted. It also can
plot the subset of the rules that are contained in a specified focus control block (FCB). FCB's in
the Expert System Development Environment organize the rules and structure the inference
engine's search. FCB's form a tree which can also be graphed.

Given the graph of the expert system, cycles can be detected. Cycles may or may not be an
error, depending on the inference engine and the rule base. EVA also checks for overlapping
cycles (cycles which share some common rules), which it considers evidence of a poorly-structured
knowledge base.

ESPE and ESE count the number of paths between all pairs of nodes in the graph. Each path
represents a potential flow of control. ESE's calculation of paths is a little more complicated than
ESPE's, because it allow variables in rules. Variable nodes in a rule premise or conclusion
duplicate that rule for each possible value of the variable.



In addition to calculating paths, ESPE and ESE allow you to examine path lengths. A long
path may indicate tricky or contorted reasoning. A short path may indicate jumping to a
conclusion. The user specifies what a long or short path is.

Input and output nodes can also be identified from the graph. Input nodes appear only in the
left hand side of rules. Output nodes appear only in the right hand sides of nodes. The meaning of
these nodes depends on the inference engine. In some expert system shells, unless these nodes are
specified as user-supplied values, or as goals, they are errors, and cannot lead to further rule
execution. Some authors refer to these as dead-end or unreachable nodes,because of this.
Unexpected values in the lists of input and output nodes reflect incomplete lines of reasoning.
Unexpected input values mean that a line of reasoning that should generate that value is missing.
Unexpected output values mean that some line of reasoning that should use that value is missing.

Each of the tools checks the expert system rule base for logical inconsistency. There are three
kinds of inconsistency that they look for. Redundancy occurs when two rules have the same
premise and the same conclusion. Conflict occurs when two rules have the same premise but
different conclusions. Subsumption occurs when two values have the same conclusion and one's
premise is a subset of the other's. CHECK also looks for unnecessary IF conditions. An
unnecessary IF occurs when a condition in one rule's premise conflicts with an IF condition in
another rule, all other conditions in the rules! premises are the same, and the rules' conclusions are
the same.

The tools identify inconsistency by comparing pairs of rules. Rushby, in [7], points out that. this pairwise consistency check is not sufficient, as a sequence of several rules may lead to conflict.
EVA has another form of logic checker that may solve that problem. It uses the meta-predicate
"incompatibl:" to discover whether the system can derive inconsistent situations such as A and not
A. The real power of this mechanism is that it is not restricted to checking pairs of a condition and
its negation; it can check any logical constraint. In the future, when expert systems are developed
with requirements specifications that specify illegal situations, this type of logic checker will be a
powerful tool in verifying that a system meets its requirements.

EVA's logic checker verifies negative constraints that specify situations that must not arise.
There may also be positive constraints, specifying conditions that must be satisfied by facts in the
knowledge base. EVA's semantics checker verifies that those constraints are consistent and are
satisfied by the rule base.

ESPE and ESE compare pairs of goal (output) values. Either all pairs may be compared, or
just a specified pair. Diffences and similarities in the values that lead to these conclusions are
reported. For example, consider the rules "if animal_class = mammal and animalcolor = tawny
and animal-appearance = stripes then animal = tiger" and "if animal_class = mammal and
animalcolor = tawny and animal_appearance = spots then animal = cheetah". If these are the only
two rules that conclude tiger and cheetah, the differences between "animal = tiger" and "animal =
cheetah" are "animalappearance = stripes" and "animal-appearance = spots".

In addition to the actual differences between goal values (information useful for debugging
why erroneous conclusions are drawn), the numbe of differences is an indication of how closely
related the values are. In the above example, the conclusions cheetah and tiger differ by only two
values, indicating they are closely related. Very closely related pairs should be examined. If it is



"nir.rtant to distinguish between the values, it is important that the values that decide between them
will be known with certainty in the environment in which the expert system will be used. If we
must be able to tell a cheetah from a tiger, but probably will not know whether it has spots or
stripes, this expert system, while technically correct, will not be useful.

When all pairs of output values are compared, ESPE and ESE count how often each non-
output value is a difference between a pair of output values. This is a measure of the extent to
which the expert system relies on that parameter to decide among possible conclusions. This
information is useful in evaluating the expert system. Even if the system is correct, if it rreics
heavily on information not likely to be known with certainty in your environment, it is not an
appropriate system for you to use. In the above example, animalappearance is used to decide
between cheetah and tiger. If animal-appearance is often used to decide between possible output
values, but the it will not be known in the environment in which the expert system will be used, or
will not be known with certainty, this may be an inappropriate expert system.

ESPE and ESE also compare pairs of input values, either all pairs or specified pairs,
identifying differences and similarities in the conclusions they can lead to. This can identify values
that should influence the outcome (reach different decisions for different input values), but do not.

ESE can also compare rules that reach the same conclusion. Most likely, these rules should
differ only slightly. Rules concluding the same vaiue from vastly different premises should be
double-checked.

ESE and ESPE produce a report summarizing the rule base. Both report the number of rules
and of values, and identify the input and output values. ESE also calculates the average use of a
parameter, and how big the average rule is.

Although most of the techniques implemented by these tools are applicable to any expert
system developed with any expert system shell, many shells have unique features which, though
powerful, should be closely examined. ESE lists "special" nodes, dependent on the shell. For
expert systems developed with Nexpert Object, the report indicates the usage of nodes for strategy,
retrieve, execute, write, createobject, deleteobject, show, and reset, and count the number of times
they are used. All these nodes affect the state of the expert system without asserting a value, and
should be examined.

All the static analysis features described so far examine only the t ile base. However, an
expert system rule base may be composed of objects as well as rules. The knowledge
representation contained in these objects must be verified as well as the reasoning expressed in the
rules. ESE is the only tool discussed in this paper which explores the structure of the knowledge
representation.

ESE produces a summary report which shows how many classes and objects there are. It
lists the average number of classes, subobjects, and properties per object, and the average number
of subclasses and properties per class. These numbers give a feel for the level of description
associated with each item. For Nexpert Object, the report also lists slots of objects which have IF
CHANGE metaslots associated with them; it also sorts and lists object properties by their inference
category. Object's contexts can also be reported. IF CHANGE metaslots, inference categories,



*contexts are all mechanisms that affect the state of the system, or its control, outside of the

ESE allows the tester to identify objects that belong to few or many classes, or have few or
many subclasses or properties. The user can also identify classes that have many or few objects in
them, many or few subclasses, and many or few properties. The user decides what few and many
means; the average numbers in the summary report provide guidance for this. This can identify
objects which are poorly represented, or objects which have extraneous detail.

STATIC ANALYSIS TOOLS FOR MAINTAINING EXPERT SYSTEMS

Development of an expert system, or any software, does not end with the test and release of
the product. Maintenance and enhancements to the system occur and need to be tested. This is
especially true for expert systems, as they are developed via a rapid-prototyping methodology.
Rapid prototyping results in several versions of the expert system in quick succession. Booz,
Allen's client produces a new prototype approximately every eight weeks. The new prototypes
must be tested, both to verify that the old functionality continues to work and to examine the new
capabilities.

The static analysis tools described for testing can be used to examine each new release.
However, the techniques described above aren't helpful in comparing the two systems, to assessSgrowth of the system. They don't ease the burden of regression testing. Static comparison of

two rule bases can be useful for this.

ESPE provides tools to help the developer assess the effect of changes before they are made.
It requires the user to load the original rule base. The user can then enter any number of new rules,
or modify or delete existing rules, and get a report showing the effects of these changes. Effects it
looks for are the addition or deletion of nodes or paths, changes in the input or output nodes,
changes in path length, inconsistency of new rutes and old ones, and changes in Lh-2 differenccs
between pairs of goal values.

Booz, Allen has implemented a variation of this. Instead of the user interactively entering
changes and noting their effects, two complete rule bases are compared. Their differences,
resulting from modifications made to refine the prototype, are reported. Identifying no differences
between parts of the two systems is as important as identifying differences. No differences indicate
no change, and therefore the regression tests need not cover that part of the system.

The comparison of the expert systems first notes changes in the size of the rule base, in both
the number of nodes and the number of rules. Changes in the average use of nodes and the average
size of rules are reported. It also lists nodes and rules that were added or deleted. Deletions in
particular should be verified because they remove knowledge from the system. The comparison
checks if any rules in the new rule base are inconsistent with rules in the original. It finds changes
in input/output nodes. Paths that have been added to the rule base are reported, as are paths that
have been deleted. Pairs of nodes where the length of the longest or shortest path between these

3les has changed are also listed.



The object representation is also compared. Changes in the number of objects and classes art-
reported, as are changes in the averages of the number of classes objects belong to, number of
subobjects objects are composed of, the number of properties describing an object, the number of
subclasses a class has, and the number of properties describing a class. It lists objects and classes
that were deleted from or added to the system, and identifies objects and classes that have been
modified. It also finds properties whose metaslots have changed. Finally, it can identify objects
that have changed contexts, and contexts which have different objects in them.

STATIC TESTING IN PRACTICE

While much has been written about these tools, little has been writen about whether they were
actually used in testing real expert systems, whether they proved practical and provided benefits to
their users.

Nguyen tells us that CHECK "was devised and tested on a wide variety of knowledge bases
built with a generic expert system shell." He does not say whether it proved useful to them,
whether it found errors that otherwise would not have been caught, and what role it played in their
testing process. Although EVA is a comprehensive tool, there is no indication of where or how it
is being used. ESPE was developed as a university research project. Though commercially
sponsored, there is no indication that its techniques are being used by the sponsor.

One real-world use of a consistency checker was reported by Bachant in [1]. Though an
automated rule checker was used, it wasn't found helpful as the level of consistency within the
system, XCON, was very low. Bachant says that checking many aspects yielded too many W
exceptions for the process to be meaningful. This would seem to indicate either a problem with
their definition of consistency or w.rith their rule base. It doesn't indicate that static analysis is not
worthwhile.

Unlike the other tools reported, Booz, Allen's tools were developed not as research efforts,
but as tools to be immediately put to use testing real-world expert systems. They have been used to
test three different expert sytems which were developed using three different expert system shells.
These were ESL (a Lisp-based expert systems language), a pseudo-English, and Nexpert Object.
The tools were able to be used with only minor changes to the component that parses the expert
system, indicating the broad applicability of its techniques.

Not all the features of Booz, Allen's tools have been used. One reason for this is that the
tools are written in Common Lisp, and the rule bases are large (thousands of rules). These two
factors combine to make static analysis a slow process that generates a lot of output. However, the
summary reports, path calculation, and consistency checker have been found useful. If rule bases
were developed more modularly, the tools could be applied to each module separately, generating
results more rapidly, with less output produced.

The consistency checker identified several problems with the rule bases. With large rule
bases, these error could not easily be found through tests or through manual examination of the rule
base. The strength of the summary report and path calculation is that they retroactively document
the system and provide insight into its structure that would otherwise have to come from long,



manual study of the internals of the expert system. Even though input and output nodes appear to
be basic information, there is often no documentation indicating what inputs the system expects and
what output it is expected to produue. By identifying these nodes, ESE provides a starting point
for the testing process.

CONCLUSIONS

Testing all software is a challenge. Testing expert systems is an even greater challenge, due
to a lack of requirements and a "hidden" flow of control, as well as the inherent challenge of
verifying non-algorithmic processes. Static analysis of an expcrt system is an important part of its
verification. The tools described in this paper can simplify the process and provide valuable
information to the systerr's tester.
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The goal of this chapter ia two-fold. First, we present a

general approach and point toward specific methods for testing

and evaluating expert systems. Recognizing that experience in

software testing has shown that no single method is completely

adequate (e.g., Beizer (101; Bellman and Walter (11]; and Howden

(34]), the approach is multi-faceted. It has been successfully

used to evaluate expert systems and other forms of advanced

information and deo7i•icn siupport fýystemn (DDS) technology (e.g.,

&ee Adelman r- 7trnel n e 1n Acdittcn, we will re:view

different methods for implementLny each facet of the approach,

and provide a framework for integrating their results (e.g., see

Ulvila et al., (64]).

The second goal in to qJbt in the integration of test and

eva•'uaien methods Into the design and development procer. Te +

*In S.J. Andriole and S.M. Halpin (Eds.), information Technology for Command

and Control. NY: IEEE Press.



and evaluation represents the control mechanism In ccft".;

system design and development. This is no less true for expert

systems than for more conventional forms of software, for test

and evaluation provides the feedback that keeps the development

process on track. In fact, it is perhaps even more important for

expert systems because their development process emphaizes

prototyping. Consequently, this chapter also identifies the

applicability of different classes of evaluation methods to

different stages in the design and development process.

OVERVIEW

This section presents a blueprint for system development, a

multi-faceted evaluation approach, and integrates the two.

System Development Blueprint

Figure 1 presents Andriole's (7] "nine step protoytyping

design blueprint" for developing decision support systems (DSSs).

We emphasize "DSS" instead of restricting ourselves to expert

system technology for three reasons. First, expert systems are

most often seen by potential users (and sponsors) as aids to

supporting, not replacing human decision makers; for example, see

the surveys by Conntantine and Ulvila (14) and Mackie and Wylie

[43). Second, expert systems are also often seen by members of

the technical, development community as a type of DSS. Mittra

[461 has, for example, shown that the components of an expert

system correspond quite naturally with the elements of the

typical DSS. And, third, the DSS design blueprint 's consistant

2
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with more traditional softwarq system development frameworks

(e.g., see Sage [57]). In particular, It I quite consictent with

the system engineering phases in the "knowledge activity matrix"

proposed by Rook and Croghan 654] to help structure knowledge

acquisition and specification tasks so as to facilitate the

transition of expert systems from laboratory to operational

settings.

Requirements analysis is the first step, and it has been

referred to as "systems targeting" by Andriole [?]. Its goal is

to profile the user, the tasks that s/he perform, and the

organizational context withtn which the -aser and system wilK

operate. Requirements analysis have too often been absent frow

expert system development efforts. As Culbert et al. [16], Green

and Keyes [31], Rook and Croghan [54], and Rushby [55] note, such

an omission has significantly impacted the formal testing and

evaluation of expert systems. Moreover, it has undoubtedly

delayed the transition of some expert systems to operational

settings because the user community targeted as its operators

have not had a significant role in tailoring the system. Previous

research (e.g., Adelman (1]; Huber [35]; Shycon (59]) has

documented the importance of user involvement to the successful

implementation of advanced information and decision technology.

Although the general approach and many of the evaluation methods

are still applicable even if a requirements analysis has not been

performed, we will assume that it has been performed throughout

the remainder of this chapter. This assumption is consistent with

our goal of bringing software engineering principles and methods

to bear on the expert system development process.

3



The second step in Andriole'a design blueprint i& fanctron"i

modeling. Although there are numerous ways to model a DSS, the

goal of each is to chow decision makers eKactly what the system

will be capable of doing, and how it will do it. This is where

storyboards (Andriole [8]), which are paper-and-pencil prototypes

of the user interface, are particularly important.

The third step is the selection of analytical methodc for

the DSS's model-based management system. Analytical methods need

to be developed consistent with the requirements analysis and

functional models. We assume here the selection of expert system

technology methods for expository purposes.

The fourth and fifth steps are software and hardware

selection, and the subsequent design and development of the DSS.

This is where the knowledge elicitation and representation

activities that make expert systems so different from other forms

of software occurs.

The sixth and seventh steps are system packaging for and

transfer to the host organization. The eighth and ninth steps are

system evaluation and feedback, respectively. Consistent with a

prototyping perspective, Figure 1 emphasizes iteration between

the steps in the blueprint. The use of formal evaluation methods

at these steps produces data for effective iteration.

A Multi-Faceted Evaluation Approach

Adelman and Donnell [5] presented a three faceted (or

phased) approach for evaluating DSSc, and demonstrated its'

potential applicability by using it to evaluate an expert system

40



prototype. The three phase evaluation approach is composed of a

cubjective phase for obtaininq ucerc' opinions regarding the

system's strengths and weaknesses; a technical evaluation phase

for "looking inside the black box"; and an empirical evaluation

phase for assessing the system's impact on performance.

Specifically, the subjective evaluation phase focuses on

evaluating the DSS from the perspective of potential ueers. The

goal of the subjective evaluation is to asseýss whether the users

like the DSS; what they consider to be its strengths and

weaknesses; and what chanqes they would suqgest for improving it.

The technical phase focusenon evaluating the DSS from both

an internal (algorithmic and/or heuristic) perspective and an

external (systemic input/output) perspective. For example, most

people considering the technical evaluation of an expert system

might focus on assessing the logical (and functional) adequacy

and accuracy of its knowledge base. Rushby [553 has called these

"competency requirements." However, from a transfer and

maintenance perspective, one also needs to be concerned with

conventional test and evaluation issues, such as whether the

system can be effectively and efficiently integrated with other

software and hardware -systems in the operational environment, and

whether it was designed consistent with the organization's design

and coding standards. Rusby has called these concerns "service

requirements." A comprehensive test and evaluation framework

needs to address both classes of requirements.

The empirical evaluation phase focuses on obtaining

objective measures of the system's performance. The goal of the

empirical phase is to assess, for example, whether persons make

5



significantly better or fatter decisions or use cignificantly

more information working with rather than without the system, and

to identify mechanisms for improving performance. It is important

to note that the potential users of expert system technology may

not be experts in the substantive domain. In these cases, one

needs both bonified experts and representative users to

participate in the evaluation. The experts are needed for the

technical evaluation of the knowledge base; the users for the

empirical evaluation of system performance. If possible, experts

should also participate in the empirical evaluation in order to

systematically assess whether system performance is a function of

user type.

Integrating the Design Blueprint and the Evaluation Approach

Adelman [2] has classified evaluation methods according to @

the subjective, technical, and empirical phases of the above

evaluation approach. Methods for all three phases are applicable

during steps 8 and 9 (evaluation and feedback, respectively) of

the development process. In addition, specific methods are more

or less applicable to other steps in the development cycle. In

particular, subjective evaluation methods tend to be most

applicable early in the cycle (steps 1 and 2) because they

represent an explicit means for defining the judgments of members

of the sponsoring team and potential users of the system. For

example, Rockmore et al. [53] used a subjective evaluation method

called multi-attribute utility assessment (MAUA), and a MAUA-

based cost-benefit analysis, to select among various types of DSS
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technology, including expert systems, for subsequent development.

Slagle and Wick (60] used a subjective method analogous to MAUX

to evaluate candidate expert system application domains. And

Bahill et al [9] used MAUA to address the valuative and technical

judgments inherent in selecting among expert system shells.

Technical evaluation methods are most applicable in software

design and development (step d). For example, as part of the

knowledge elicitation and representation process one should

routinely assess the adequacy and accuracy of the knowledge base.

This can be accomplished in formal evaluations, as well as

through informal ones, by using (l) static testers to help assess

the knowledge base's logical consistency and completeness, and

(2) experts, both those participating in development and those

acting as evaluators, to help assess the knowledge base's

functional completeness and predictive accuracy. In addition,

traditional software test and verification methods can be used to

help assess the "service" versus "competency" requirements of the

expert system. These methods have considerable applicability (a)

prior to programming code for verifying requirements analyis

documentation and functional models of the software (steps I and

2), and (b) once the development process is well underway during

hardware configuration, system packaging, and system transfer

(steps 6 and 7).

In contrast to technical evaluation procedures, which focus

on how well the system was developed, empirical evaluation

methods focus on how well decision makers can perform the task

with (versus without) the system. Remember, the expert system may

be addressing only part of a much larger organizational decision.

7



Even if the technical evaluation of the knowledge base chows that.

it has perfect predictive accuracy, the expert system's

contribution still may not ensure better decision making for the

larger decision problem.

From an iterative, prototyping perspective, it is

anticipated that experiments will be conducted through'ut

software development (step 4) and hardware configuration (step 5)

as a means of objectively measuring the performance of the system

and testing hypotheses for improving it. During this iterative

process, experiments also can be used to evaluate system

documentation (step 6). Prior to software development,

experiments can be used in evaluating alternative storyboards.

After transferring the system to the test organization,

experiments, quasi-experiments, and case studies can be used to

evaluate performance in the operational setting. Finally, there @

are other empirical evaluation methods. In particular,

simulations and statistical analyses of historical data are

sometimes applicable during requirements analysis for assessing

the potential utility of DSSs using different analytical methods.

The remainder of this chapter will overview subjective,

technical, and empirical evaluation methods. A book-length

treatment of these methods can be found in Adelman (3].

SUBJECTIVE EVALUATION METHODS

The goal of subjective evaluations is to assess the system

from the perspective of potential users and sponsors. This is

accomplished by identifying measures of effectiveness (HOEs) that



will provide the information required to assess the system's

utility. The explicit identification of MOEs is particularly

important at the beginning of the development process because

they represent (a) reference points for the development team to

use, and (b) criteria for evaluators to monitor in order Lo

assess whether the development process is on track.

Gaschnig et al. [28, p. 2 58j nave emphasized the importance

of developing MOEs early in the expert system development

process. "It is important for system designers to be clear about

the nature of their motivations for building an expert sy&tefr.

The long-range goals must also bp outlined explicitly. Tus sale

1 of a system's development, the initial design, should be

accmppried by explicit statements of what the measures of the

program's success will be and how failure or success will be

evaluated. (itallics theirs) It is not uncommon for system

designers to ignore this issue at the outset, since the initial

challenges appear so great upon consideration of the decision-

making task that their expert system will have to undertake. If

the evaluation stages and long-range goals are explicitly stated,

however, they will necessarily have an impact on the early design

of the expert system."

Multi-Attribute Utility Assessment

Riedel and Pitz C52, p. 986], as well as others (e.g.,

Adelman and Donnell [5]; Andriole [7]; Keeney and Raiffa [37];

Ulvila et al. [64]), have pointed out that Multiattribute Utility

Assessment (MAUA) "... provides a formal structure for

conceptualizing MOE's, a mechanism for both decomposing the

9



globil MOE into ita component dimensions and for reinttgcaItIk.,

them to yield one summary measure of value." When applying MAUA

to the evaluation of expert systems and other types of DSS, the

sytem is conceptually decomposed into attributes that can be

defined well enough so that one can obtain either subjective or

objective measures (MOEs) of how well the system performs on each

attribute. This decomposition typically proceeds through the

creation of a value hierarchy, such that the global attribute

entitled "the overall utility (or value) of the DSS" is

decomposed into major categories of attributes, which are further

decomposed, and so forth, until one is reasonably confident that

one can define and obtain precise, reliable, and valid measures

(or scores) of the system on each attribute. Table 1 presents the

value hierarchy developed by Adelman and Donnell (5).

Reintegration typically occurs within MAUA through the @

application of utility functions and relative importance weights.

An expert system is usually evaluated on many different

attributes, all of which need to be defined as precisely as

possible. The natural measurement scale for an attribute depends

on the nature of the attribute. For example, the scale for an

attribute could be in objective units (e.g., minutes for time) or

subjective units (e.g., answers on a questionnaire) depending on

the attribute. Nevertheless, a common scale is required to

compare scores on one attribute with scores on another, that is,

"apples with oranges," and, by so doing, obtain an overall score

for the system. A utility scale, which conceptually measures

psychological value or satisfaction, meets this requirement.

10
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Utility (or value) functions are used to translate uystem

performance on an attribute into a utility scoce on that.

attribute. Then, relative importance weights (or other forms of

decision rules) are uue to assess the relative value of a utility

score on one attribute with the utility score on another and,

thereby, obtain an overally utility Ecore for the cyc!tem. (Thi.

weighting procedure is formaiiy valid if additivitv a.umptlon!7

are met; see Keeney and Raiffa [37). An acnumption of adddit'vit,

is generally a reasonable approximation; see Edwards [24].)

Other Subjective £valuati:. M;ý,ýhods

There are other subjective evaluation methods besides MAUA.

For example, Adelman [3] also discusses traditional cost-benefit

analysis, the dollar-equivalent technique, decision analysis, and

a MAUA-based cost-benefit analysis. In addition, Liebowitz £42]

has used the Analytical Hierarchy Process developed by Saaty

[56), Tong et al. [63) have proposed a frame-based approach, and

Klein and Brezovic C39] and Slagle and Wick C60] have, used

subjective evaluation approaches analogous to MAUA. It is

important to emphasize that in all cases these methods use

personal judgments. This initially might be disturbing to (an(

difficult for) members of both the sponsoring and devplopinc

teams, for it emphasizes the subjective process decision makers

go through when evaluating DSSs. To quote Riedel and Pitz [52,

pp. 987-988], "There is no way to avoid the fact that the overall

MOE must be based on such Judgments, or the fact that nc

mechanical procedure can replace this subjective assessment....`

S Through the explicit identification of MOEs and procedures for

11



converting performance scores into a global MOE, Eubh!c&Ct1vL

evaluation methods provide refencence points for the development

team to use when developing the expert system, and criteria for

the evaluator to monitor in order to assess whether the

development process is on track.

TECHNICAL EVALUATION METHODS

Three classes of technical evaluation methods are, in turn,

briefly overviewed in this chapter: (a) static testing for

assessing the logical consistency and adequacy of the knowledge

base; (b) using domain experts for assessing the functional

completeness and predictive accuracy of the knowledge base; and

(c) conventional software test and verification methods for

assessing the service requirements of the entire system.

Logical Consistency and Completeness

As Rusby (55] points out, the concepts of static testing in

conventional software testing can be readily extended to expert

systems because, in both instances, the focus is on detecting

anomalies in the program without actually executing it on test

cases. To quote Rushby (p. 92), "An anomaly in a program is

nothing more than an apparent conflict between one indication of

intent or purpose and another .... " The types of anomalies of

particular interest in expert systems pertain to the logical

consistency and logical completeness of the knowledge base.

Researchers (e.g., Kirk and Murray [38], Nazareth [47), and

Rushby [55]) have developed taxonomies Ut ariomalies in the
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knowledge base -tnaL ajre ':-u ~~~n

anomalies are listed below, in ,ioing co, wi ,S.aulnie tne

knowledge base is represented in Lhe form uf "it -then pcucOn

rules or can be transformed into such a rLp u -tnLa ,. As

Nazareth (47) points out, "For zystems Lhat emp.uy mure

representation schemes, the ia.uce of -he vtif f.:ioo "a• m

differ" (p. 257).

- Redundant Rules. Individual ýui r qrvup; Q U ,:' Lures 111

essentially have the same conditions and conclusions.

- Subsumed Rules. When one rule's (or ruie group e

is already expresserd in another'. 21az I:eache.-: te "•ut

conclusion from similar but less restrictive cund iwns.

- Conflicting Rules. Rules (or groups of rules) that use the

same (or very similar) conditions, but result in different

conclusions, or rules whose combination violates

principles of logic (e.g., transitivity).

- Circular Rules. Rules that lead one back to an initial (or

intermediate) condition(s) instead of a conclusion.

- Unnecessary If Conditions. The value on a condition does

not affect the conclusion of any rule.

- Unreferenced Attribute Values. Values on a condition that

are not defined; consequently, their occurrence cannot

result in a conclusion.

- Illegal Attribute Values. Values on a condition that ace

outside the acceptable set of values for that condition.

- Unreachable Conclusion (and Dead Ends). Rules that +) not

connect input conditions with output conclusions.

Static test iig for the above anomalies could be performed

13



%anually for small, well ctructured knowledge baces. Fo r t-,v.-)

moderately sized knowledge bases, however, this appruach Ic

precluded by the amount of effort required and the probability of

disagreements among testers. Consequently, researchers (e.g.,

Culbert and Savely [17]; Franklin et al. [27); Nguyen et al.

[48]; Stachowitz et al [61)) have begun developing autonLated

static testers. We do not have the space here to discuss these

different efforts. However, we do want to caution the reader that

automated s'atic testers are not without their limitations. To

quote Nazareth [47], "In most cases the verification process :s

closely dependent on the structure of the problem domain, making

translation of principles to other systems difficult.

Additionally, only a subset of the errors identified [above) are

covered. ... The expansion of verification scope has serious

implications for detection. ... [And] the majority are directed @

tuward applications without uncertain inference" (pp. 265 & 266).

Nevertheless, automated static testers represent a major step

forward in assessing the logical consistency and completeness of

a knowledge base.

Functional Completeness and Predictive Accuracy

By functional completenese we mean to address the range of

domain-oriented questions, such as whether the knowledge base

contains all desired input conditions and output conclusions, or

even "knows" its knowledge limitations. Some of these questions

can be answered by domain references. However, the level of

domain expertise typically desired for expert systems is

14



typically not codified in such referencs•. indeed, Davis 118) has

argued that one of the maior contributions of expert ryctem

technology is the organizatinn and codification impacts it has on

various disciplines. Consequently, domain experts are typicAlly

required to evaluate the functional completeness of the system.

However, one should remembe'r that the system's level of

functional comv' teness depends cn its -- tar- of And,-:ezt •rd,

most importantly, the domain requirementc resulting from the

requirements analysis (step 1).

The predictive accuracy of the knowlecye base uertalnz to

the correctness by which the rules (or tbtev'er ren-,P-,ýFtlon

scheme) relates input conditions to output conclusionu. Such an

assessment is essential for expert systems, for "garbage in" is

literally "garbage out." Moreover, domain experts, knowledge

engineers, representation schemes, and elicitation methods all

potentially represent threats to knowledge base validity during

development (Adelman, [4)). Experts, both those who participated

in development and those acting as independent evaluators, are

typically used to evaluate the predictive accuracy and thus,

adequacy of the knowledge base. Expert evaluation typically

proceeds in two ways: through examination of the kncwledQe tase.

and the evaluation of test cases.

Expert examination of the knowledge base typically focuses

on whether the system exhibits "correct reasoning." The obvious

concern is, of course, that the knowledge base not have mistakes.

However, another concern, and one which Gaschnig et a] . (20

pointed out is not shared by all developers, im whether their

programs reach decisions like human experts do. Many

1. 95



psychologists have long argued that this concern can i.ot be

answered for one can not, so to speak, look inside an expert's

head to obtain the "correct reasoning." Instead, all one can do

is build "paramorphic models" (Hoffman, (331) of the reasoning

process, and evaluate their predictive accuracy against. test

cases. Indeed, researchers (e.g., Dawes and Corrigan [19];

Einhorn and Hogarth (253; Levi (41]; Stewart et al. [62] ) have

shown that simple linear models can often result in prediction as

good as that achieved by experts or the far more complex models

found in expert systems.

This is not a resolved issue. As Gaschnig et al. (p. 255)

point out, "... there is an increasing realization that expert-

level performance may require heightened attention to the

mechanisms by which human experts actually solve the problems for

which the expert systems are typically built." In additlon, @

Adelman, Rook, and Lehner [6] found that domain experts'

judgments of the utility of DSS (including expert system)

prototypes was significantly affected by the match between how

they and the system attempted to solve the problem. This suggests

that, at a minimum, the system's representation and presentation

scheme needs to be reviewed.

The predictive accuracy of the knowledge base is performed

using test cases and performance standards. The desired standard

is ground truth; that is, the correct answers to the test cases.

Correct answers are most desirable because substantial research

(e.g., see Ebert and Kruse (23]; Goldberg (303 ; Yu et al. (673)

has shown that experts do not always make perfect inferences and,

16



in fact, often disagree w:th one another ;.n the Kinds of complex

domains for which many expert systems are deveioped. Otcen, it is

inappropriate to expect better predictive accuracy from the

system than the expert. (This may not be the case where the

system incorporates knowledge from a limited, well defined

domain--such as a procedure manual-- or where tne svstemys

represents the expertise of ýeve:al xpert3. Here, it may be

appropriate to expect the system to te merc accurate than any

given expert.)

If ground truth measures exist, one shouid ciscriminate

between "accuracy" and "bias" in a signal detection sense (Lenner

[40]). Accuracy refers to the degree of overlap 2i the

distributions of belief values when the hypothesis is true versus

false. Bias refers to the proportion of false negatives

(hypothesis true, but user says false) to false positives

(hypothesis false, but user says true).

If the correct answers do not exist or, for whatever reason,

are inappropriate for the test cases, then one must rely on the

judgment of an expert or the consensus judgments of a group of

experts. Considerable care must be given to structuring the

experts' activities. In particular, the evaluation team must

ensure that the experts are "blind" as to whether the system or

other experts generated the conclusions to the test cases. This

is typically referred to as a "Turing test" (e.g, see Rushty

(55]).

In closing this subsection, it is important to note that

test case construction is an important issue. To quote Okeefe et

al. (49, p. 83], "The issue is not the number of test cases, it

17



is the covera = of Leat caaeC--that i, how we! I they ref ecl tLe

input domain. Th.e input domain is the population of permissibie

input..." (italllcs theirs). The required coverage capabilities

is clearly a statement that needs to be a result of the

requirements analysis. For as O'keefe et al. point out,

developers frequently devote a disproportionate amount of time to

attempting to ensure that the system can handle the truely

"expert" cases that may occur very infrequently. Moreover, these

"infrequent" cases often become the test cases. This may or may

not be appropriate depending on the requirements for the system,

and it can certainly be expensive.

An alternative identified by O'keefe et al. is to randomly

select test cases using a stratified sampling scheme such that

the relative frequency of the cases is representative of those in

the operational environment or stipulated in the requirements. a
Additionally, test cases should be chosen to cover situations 1

where a failure in the system would be especially serious. It is

also important that some of the test cases simulate the most

common operation of the system.

Service Requirements

Verification testing should be systematically performed for

the service requirements of expert systems, just like any other

software product. Fagan and Miller [as reported in DeMillo et al.

[20] have identified four phases for software testing. The first

phace is manual analysis in which the requirements specification

and design and implementation plan are analyzed for problems by



experienced software engLneers. Tne secuid phase is static

analysis, which may be manual or automatEd, in which requirements

and design documents and software are analyzed, but without code

execution. The third phase is dynamic analysis in which software

is executed with a set of test data, such as in random testing,

functional testing, and path testing. The fourth ph-ise, which

Fagan and Miller consider to tie optiona1, JIs attempt•:n; tc i.rove

the program as being correct, such an in mathematical

verification. Detailed discussions of these and other methods can

be found in, for example, DeMillo et al. [20), Fa-rley 12b),

Pressman [51], and Roshby [55].

Section Summary

In closing, we want to make four points about technical

evaluation methods. First, as Hamlet (32, p. 666] points out,

each method has its strengths and weaknesses and therefore,

represent "imperfect test methods." Therefore, evaluators need to

use multiple methods to obtain accurate feedback. Second, the

intent of testing is to find errors. As Fairley (26, p. 268]

points out, "... one has most :onfidence in programs with no

detected bugs after thorough testing and least confidence in a

program with a long history of fixes." Third, the best way to

minimize the number of errors and the amount of time, effort, and

money required to fix them, is to eliminate errors early in

development. Consequently, as Gelperin and Hetzel [29] point out,

software development life cycles are becoming "preventive"

through the application of software testing methods early in the

development process. And, fourth, testing methods using experts
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to evaluate the knowledge baee rely heavily on empirical analysIc

via test data. However, the reader should keep a clear

distinction between the empirical results of technical and

empirical evaluation methods. The former focus on how well the

expert system's knowledge base was developed; the latter focus on

how well system users, who may not be experts, can perform the

task with versus without the expert system.

EMPIRICAL EVALUATION METHODS

Empirical evaluation methods can be classified into

experiments, quasi-experiments, case studies, simulations, and

statistical analyses of historical data (e.g., see Adelman 13]).

Only the first two methods are considered here.

Experiments

Experiments are, by far, the most common and commonly

thought of empirical evaluation method. Moreover, they are

particularly appropriate when a number of people would actually

use the developed expert system, for experiments are designed to

help generalize from a test sample to the larger population.

One typically thinks of two kinds of experiments. The first

kind tests the system against objective benchmarks that represent

performance constraints. If the system passes the benchmarks, it

proceeds further; if it fails, it undergoes further development

or is set aside. "For example, it is not enough to know that with

the aid the user can arrive at a decision in 30 min. If the

organizational user required a decision in 30 min, the aid would
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be effective. If a decision was niednd in .5 min, the aid wculd

not be effective" (Riedel and Pitz [52, pp. 984-98S]).

It should be noted that such performance benchmarks differ

from the more traditional time and efficiency measures used to

benchmark computer systems. (Note: Readers interected in the

latter are referred to Press (50], who benchmarcked different

expert systems on the time required to lead and execute different

types of knowledge bases, and the amount of dick space required

in source and fast-load formats.) Both classes of benchmarks

typically get developed during requirementc analyses empha-zinq

a features-based approach. Althouqh such peifo'rance .mort-ainte

may be necessary in real-time, life-critical activities, they are

unnecessary for many expert system applications.

Second, performance benchmarks represent non-compensatory

decision rules; that is, the system's other features do not

compensate for failing the performance benchmark. Such a position

may be inconsistent with the compensatory decision rule guiding

the sponsoring team's intuitive decision making processes or more

formal subjective methods, such as MAUA. After all, it's quite

possible that the sponsoring team might be willing to give up

some time for task accomplishment (or some whatever) in order to

gain even alittle improvement un other MOEs, such as decision

performance or personnel staffing requirements (or whatever).

The second kind of experiment, and the one that is focused

on here, is a factorial design (e.g., see Cochran and Cox [13])

where (a) one or more factors are systematically varied as the

independent variable(s), and (b) the dependent variabl-(a) ire

quantitative, objective measures of system performance. There are
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five basic components of factorial experiments. First, there ale

the participants in the experiment. These may or may not be

experts depending on the targeted users of the expert system's

advice. We focus on "users" because the system operators may or

ma- not be the actual decision makers.

Second, there is the task(s) that the participants are to

perform during the course of the experiment. Test cases are often

embedded in larger scenarios representative of the organization's

problem solving environment in order to effectively assess (1)

the users' ability to solve problems with and without the system,

and (2) their opinion of system characteristics, such as its

speed, explanation capabilities, organizational fit, etc.

Remember, the expert system may be addressing only part of a much

larger organizational decision.

Third, there is the experimental condition(s) or independent *

variable(s) of interest, such as whether the participants perform

the task with versus without the expert system. The level of task

difficulty should be either as representative of the operational

environment as possible or matched to the required performance

capabilities of the system. The capabilities of the system depend

on it stage of development (e.g., see Gaschnig et al., :28];

Marcot, [44]).

Fourth, there is the dependent variable(s) (or MOEs) of

interest. Objective measures (e.g., performance and speed),

observational measures (e.g., regarding how the system is used)

and subjective measures (e.g., user confidence in the solution)

can all be used as the dependent variable(s). In the case of
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decision quality, one should use either ground truth measures

(i.e., the correct answer) for the tack or, if they do not exist

or are inappropriate, the collective judgment of two or more

experts given the large amount of research showing expert

disagreement. (The use of one expert is acceptable if the

requirement is that the expert system emulate the judgments of

that expert.) If ground truth measures exist, one should

discriminate between "accuracy" and "bias" in a signal detection

sense, as was done for the knowledge base. If experts are used,

"blind" ratings as to which experimental conditions produced tha

solutions are again required to pontrol against bias.

And, fifth, there are the procedures governing the overall

implementation of the experiment. Substantial care should be

directed toward accurately representing the unaided as well as

aided condition to ensure a fair test. If performance is better

in the "aided" condition, we want to be able to say that it is

due to the expert system and not some other extraneous factor. In

order to do so, we need to (ideally) try to control for all

"plausible rival hypotheses" (Campbell and Stanley, [12, p. 36])

that might explain the obtained findings. Toward that goal we

introduce the concepts of reliability and validity.

Yin [66, p. 36] defines reliability as "demonstrating that

the operations of a study--such as the data collection

procedures--can be repeated, with the same results." The key

concept is replication. In contrast, "valid" is defined by

Webster's dictionary [65 , p. 1608] as that which is sound

because it is "well grounded on principles or evidence." If an

experiment is valid, its conclusions can be accepted; that is,
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rival hypotheses have been controlled for.

An experiment can be reliable, but its conclusions invalid. @

However, an experiment can not be valid if it is unreliable; that

is, one can not conclude that the results are well grounded if

the evidence upon which they are based is undependable. The basis

for good experimentation is, therefore, reliable (i.e.,

dependable) procedures and measures. Although far from trivial,

reliability is typically possible in experimentation because of

high experimenter control. For example, the experimenter can

pilot-test and subsequently modify the procedures and measures

until they produce the same results when applied to the same

situation, regardless of who performs the experiment.

We consider four types of validity. First, Yin (66, p. 36)

has defined internal validity as "establishing a causal

relationship, whereby certain conditions are shown to lead to @

other conditions, as distinguished from spurious relationships."

As Cook and Campbell [15, p. 38] note, "Internal validity has

nothing to do with the abstract labeling of a presumed cause or

effect; rather, it deals with the relationship between the

research operations irrespective of what they theoretically

represent" (itallics theirs). Although there are numerous threats

to internal validity, randomization of participants to

experimental conditions is the most effective means for guarding

against them.

In addition, one needs to consider the experiment's

construct validity, its statistical conclusion validity, and its

external validity. Yin (66, p. 36) has defined construct validity
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as '... establishing good operational measures for the concepts

being studied." Constuct validity is required in order to "nsiake

generalizationc about higher-order constructs from research

operations" (Cook and Campbell [15, p. 38) in a particular study.

Good construct validity means that we are meanuring that, and

only that which we want to be measuring. Of particular concern in

expert system evaluations is that the "system treatment" is not

confounded by something else. If confounding exists, then the

"something else" represents rival hypotheses that could explain

our obtained results.

"Statistical conclusion validity is concerned not with

sources of systematic bias but with sources of random error and

with the appropriate use of statistics and statistical tests"

(Cook and Campbell [15, p. 80]). The former concern is with

whether the study is sensitive enough to permit reasonable

statements regarding the covariation between the independent and

dependent variables. The latter concern is with what constitutes

appropriate statistical tests of these statements; in this

regard, see O'Keefe et al. (49] for expert systems.

As Campbell and Stanley £12 , p. 5) point out, "External

validity asks the question of generalizability: To what

populations, settings, treatment variables, and measurement

variables can this effect be generalized?" (italics theirs).

Within the context of expert system evaluations, external

validity deals with the extent to which the results of an

experiment conducted in a simulated (laboratory) setting will

generalize to an operational environment. Consistent with an

iterative, prototyping approach, the representativeness of the
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experimental setting and the level of the cyctem's performance

requirements should advance throughout the development cycle.

Although the latter is routinely acknowledged, the fu.mer is not.

It must be remembered that most information and decision

technology fails to be successfully implemented for

organizational, not technical reasons. Consequently, increasing

the fidelity of the organizational and environmental interfaces

between the system and its users is essential in generalizing the

performance results obtained in the laboratory to the real world.

Quasi-Experiments

Ideally, field experimentation would be used to assess if

the expert system significantly improved performance in an actual

organizational setting. For example, appropriate organizational

units (e.g., sections in a company or governmental agency) would @

be randomly assigned to the "with system" and "without system"

conditions, and their performance measured until it stabilized.

If possible, a "placebo" condition would be included too.

Organizational units in this condition would be given some

"treatment" that was not hypothesized to have any effect on

performance. This is analogous to giving patients sugar pills

when evaluating new drugs, and is oriented to controlling for the

"Hawthorne effect" (e.g., see Schein [58]) confounding in the

"with system" condition that is the result of being given special

treatment and not the technology. The unit of analysis is the

performance of the organizational unit; consequently, a large

enough sample of units would be required for performing
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statistical tests.

The sample size and randomization requirements of true

experiments is typically not possible in many organigations.

Quasi-experimental designs should be used in such situations, To

quote Campbell and Stanley (12, p. 34), "There are many social

settings in which the research person can introduce something

like experimental design into his scheduling of data collection

procedures (e.g., the when and to whom of measurement), even

though he lacks the full control over the scheduling of

experimental stimuli (the when and to whom of exposure and the

ability to randomize exposures) which make a true experiment

possible. Collectively, such situations can be regarded as quasi-

experimental designs." (itallics theirs]

There are a number of different types of quasi-experimental

designs. Campbell and Stanley [12], for eKample, identify ten

types. These include, for example, (a) time series designs, where

the organizational unit would be measured for a long period of

time before and after receiving the system; (b) multiple time

series designs that do not use randomization, but do use a

control group that does not receive the system; and (c)

nonequivalent (and nonr7ndomized) control group designs that rely

on analysis or covariance to assess whether the pretest and

posttest difference for the expert system group is significantly

bette- than that of the control group.

SUMMARY

This chapter has presented a multi-faceted approach to

p testing and evaluating expert systems. This approach is composed
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of subjective, technical, and evaluation methods. These m ethdt

can be used to evaluate the system at the end of development or

used, as we would recommend, throughout the development process

to provide feedback that keeps development on track.

The different methods overviewed herein address different

test and evaluation criteria. Figure 2 presents a framework that

not only summarizes these criteria, but attempts to integrate

them by using a Multi-Attribute Utility Assessment (MAUA)

hierarchy. This hierarchy builds on the previous work cf Ulvila

et al. [64). It can be used in conjunction with MAUA scoring and

weighting procedures to assess the overall utility of an expert

system to users and sponsors. This is the top-level of the

hierarchy. The goal of developers and sponsors of expert systems

for operational settings is, of course, the creation of high

utility technology.

The hierarchy has two branches. The first contains criteria

for technical evaluations. These include design and coding

standards (those shown are adaptations of the relevant standards

from DOD-STD-1679A [21]; DOD-STD-2167 [22]; JCMPOINST 8020.1

[36); and MIL-STD-1679 [45];) and competency (i.e., knowledge

base) and service (i.e., conventional software) requirements. The

knowledge base is decomposed into logical consistency and

completeness, functional completeness, and predictive accuracy.

The second branch contains criteria appropriate for the

empirical and subjective evaluations. These are grouped according

to performance and usability criteria. Performance is decomposed

into criteria based on ground truth (or experts' ratings), and
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the judgments of a ýcr E,. k-it 1 1 s (uA.'L csed into criteria

based on the observation ot patticipantz workiny with the Cystem

and their judgments of it.

We hope this chapter has made clear that methods exist for

assessing expert systems on each of these criteria. That i. no.

to say that no further deveilpment work iu requ.red, for much

research still remains. hub.1 L :t t AV t hat he i eLt and

evaluation community is beginn.nýg tO azzembne the rigorouc

procedures and technology required to effectively evaluate expert

systems. Moreover, subjective evaluation netkods iike t-Atl'

represent a mechanism for converting the individual assesumetLL

on these diverse criteria into an overall utility measure.

Further research is also required here, for there is little

experience converting such assessments into measures of utility.

Nevertheless, a firm foundation exists upon which to build.
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Abstmect-The field of knowledge-based systems has recently recognized the importance of verification,
validation, and testing. This paper presents the results of a survey of the testing practices of knowledge-
based systems developers. Common testing strategies are reported and analyzed. Factors affecting
testing are discussed. A comprehensive approach to evaluation is described. General conclusions and
lessons learned are presented.

1. INTRODUCTION tems move from research prototypes to operational
RECENTLY, there is an increasing awareness of the ira- systems in markets such as nuclear power, aerospace,

portance of verifying, validating, and testing sophisti- defense, finance, manufacturing, science, and medi-
cated software such as knowledge-based systems. In a cine, more and more managers and developers are re-speech to the Annual Symposium of the International alizing the need for more rigorou testing.
Test and Evaluation Association, Deputy Secretary of Despite the increasing need for more rigorous testing

Defense Donald Atwood stated that, "we tend to un- of knowledge-based systems, tools, procedures, and

derestimate the amount of testing necessary in software- methods have only recently become more prominent

based weapon systems," and cited evaluation of soft- in the literature. N.L. Sizemore of Comarco Inc. in
ware as "the fastest growing problem in the Pentagon's Sierra Vista, AZ, maintains an annotated bibliography
test programs" (Strucka 1989). of "Materials Related to Testing Expert Systems," This

The Department of Defense is not alone in facing bibliography includes journal articles, book chapters,
this groweng problem. Some recfens ents have shown and conference presentations related to verification,

that software systems which are not tested thoroughly validation, and testing of expert systems. As of October
i 1989, the bibliography contained a total of 135 entries.can subject software developers to possible legal lia- Over 70% of the entries appeared since 1987, and over

bility. For example, "a computerized therapeutic ra- 30% of the entries w e ared sinceeding, thd ove

diation machine has been blamed in incidents that have 30% of the entries were from two proceedings, the Au-

led to the deaths of two patients and serious injuries gust 1988 AAAI Workshop on Validation and Testing
to several others. The deadly medical mystery posed of Knowledge Based Systems, and the IJCAI-89 Work-

by the machine was finally traced to a software bug, shop on Verification, Validation, and Testing of

'Malfunction 54,' named after the message displayed Knowledge-Based Systems.
A majority of the research has focused on oneon the operator console" (Joyce. 1987). unique aspect of testing knowledge-based systems-

Although this example is extreme, it clearly illus- the

trates the important role of software verification, val- the knowledge base itseltf One example is EVA, the

idation. and testing (VV&T). As knowledge-based sys- Expert System Validation Associate, developed by the
Lockheed Al Center. EVA is a comprehensive tool to
validate any knowledge base written in an expert system

Groud uderconractnumer AEA8-88C.028. Proing shell. EVA's tools include a structure checker, a logic
This work was supported by the U.S. Army Electronic Proving checker, a semantics checker, a completeness checker.
Ground under contract number DAEA I -88-C-0028. The views, chkeasmnishceracoptnsshce,

opinions, and/or findings contained in this report are those of the a rule refiner, a control checker, a test case generator,
authors and should not be construed as an official Department of an error locator, and a behavior verifier. The tools can
the Army position, policy, or decision unless so designated by other be used as an aid in development, quality assurance,
documentation. The authors would like to thank Mr. Robert Harder and maintenance of a knowledge-based system (Stach-
of the U.S. Army Electronic ProvingGround for his helpful comments owitz, Chang, & Combs. 1988). At the NASA/Johnsonand support.

Requests for reprints should be sent to Monica M. Constantine. Space Center, research is conducted on inference en-

Decision Science Consortium, Inc., 1995 Preston White Drive, Suite gine validation, development methods. and support
300, Reston, VA 22091. tools such as CRSV (Cross-Reference. Style, and Ver-
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ification). CRSV. a companion tool for CLIPS. pro- The interviews. perfbrmed in person or over the
vides the ability to verify a knowledge base. CRSV in- telephone, were relatively open-ended. Generally, the
cludes capabilities for cross-referencing relationships. interviewees were asked to: provide a brief descnption
style checking, and dynamic tracing (Culbert & Savely. of the system. indicate whY the system was considered
1988). The Intelligent Machine Laboratory at Worces- artificial intelligence (Al). provide information on how
ter Polytechnic Institute is investigating methods for the requirements for the system were specified. describe
representing a rule base as an evidence flow graph for the development environment, report on the use of
use in verification and validation (V&V). Representing experts (single or multiple) in developing or testing the
a knowledge base as an evidence flow graph aids in system, state how -.2ie s•skeni was tested. and specify
detecting unused inputs and subconclusions. unreach- what was perceived to be the greatest difficulty or rig-
able conclusions, and relationships between inputs and gest stumbling block in de% elopment and testing.
outputs (Becker, Green, Duckworth. Bhatnagar, &
Pease, 1989). Bellman and Walter of the Computer 2.1. Knowledge-Based Systems in the Army
Science Laboratory at The Aerospace Corporation have
developed an approach to V&V that stresses that At the time of the survey, knowledge-based systems in
knowledge bases are models. and methods to test the Army were moving from the research labs and into
knowledge bases should both identify and correct er- the organizational areas. There were a large number
rors. The methods include incidence matrices. CART of prototype systems in the various organizations within
for classifying cases, and techniques to obtain test cases the U.S. Army- some were operational. few had been
(Bellman & Walter, 1988). Also at The Aerospace Cor- fielded, and even fewer were building up a track record.
poration, research is being conducted for establishing The large number of prototypes is not unusual. For
criteria that define a rule base as a formai mathematical example, there are over 2000 expert systems in Japa-
structure and on algorithms that check the rule base nese industries and many of them remain as prototypes
against the specified criteria (Landauer, 1989). (Terano & Kobayashi, 1989). The large number of

The recent literature stresses the complexity of the prototypes may be indicative of the relatively new po-
knowledge base, the unexpected side effects caused by sition of knowledge-based systems outside the research
interactions of rules, and the importance of rigorously laboratories.
testingthe knowledge base. However. in practice, these Movement of Al techniques from the research de-
aspects of testing knowledge-based systems are rarely partments was illustrated by the establishment of Al
emphasized. For example. Harmon. Maus, and Mor- centers. Organizations within the Army were estab-
rissey (1988) state, "one appealing feature of an expert lishing working groups committed to using Al tech-
system is that its knowledge base is built incrementally. niques to solve problems, improve productivity, and
Because of this. the knowledge base itself doesn't need lower costs. Organizations. such as the Defense Logis-
a formal test phase." tics Agency and the Electronic Proving Ground. were

Although the importance of verification, validation, also providing in-house training on selecting valid Al
and testing of knowledge-based systems is gaining projects, use of shells, and knowledge engineering. The
prominence in the literature, rigorous VV&T methods Al centers usually mixed a number of small, short-
have not yet been put into practice. Currently, VV&T term Al projects with one large, longer-term project.
presents a difficult challenge for the expert system The success of a few small projects often paved the way
manager, developer, tester, and user in both the com- for a commitment from management to devote the
mercial and government markets. This paper presents time and resources for a more costly, longer-term
the results of a survey of testing practices, reports and project.
analyzes current testing strategies, and discusses factors Knowledge-based system projects in the Army coy-
which affect testing. Additionally, a comprehensive ered a diverse range of applications, many of which

approach to evaluation is described and general con- were similar to commercial applications. Knowledge-
clusions and lessons learned are presented. based systems had been applied to many different tasks.

including hazardous material classification, selection
of appropriate contract clauses, in-house support for

2. THE STATE OF THE PRACTICE medical research (human vaccine testing and immu-

During 1989. we conducted interviews with 30 mem- nization scheduling), assignment of ratings for psychi-
bers or employees of the U.S. Army who had experience atric disability compensation, battle management. and
in developing and testing knowledge-based systems. diagnostics for helicopter repair. Many of the knowl-
The individuals represented seven different organiza- edge-based systems used information from a single or

tions in the Army: Department of the Army, Army multiple experts in a domain area and incorporated
Materiel Command. Army Research Institute, Defense information into the knowledge bases from official

Logistics Agency, Training and Loctrine Command. doctrine or regulations. The systems ranged from a
Forces Command, and Health Services Command. number of small "in-house" aids that contained about
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50 rules to a very large system that hid over 400tl pro- adcces ,o large data",,sCS of converting It) a different
cedures, each containing its own set of rules. 'I he sbs- shell, a different development language, or a different
tems were designed to run on a variety of machines-.- hardware contiguration -and not on issues relating to
personal computers. main frames, Sun workstations, the expected performance d4 the software. 1 he lack of
or Symbolics. documented requiremen;s and the "fuzz'" nature of

The systems were designed for use by both experts a knowledge-based system add to the difficlliv of test-
and nonexperts. Typically both experts and nonexperts ing it.
interfaced with the system in a similar manner (an-
swering a series of questions or making sclections from
a menu), but the expert was able to use his or her
knowledge of the problem area, while the noncxp•.' In a ;king., h it i I0 ,- to, st-: kn__wledg,: K:ascd system,
had to use other sources such as invoices, billing -taie- "c rcw1 , ranvc- of n)t.* oses. Somc respondents
ments, or patient summaries. The difference in end thou~ght tha' tesing Al software was not any ditk-rent
users suggests that different aspects of the system should from testing conventional software ("a rule base is just
be emphasized, depending on the end user. For ex- a structured database"), others believed that testing At
ample, more emphasis may be needed on the interface, software was very different and required a multifaceted
stress testing, and the quality of the explanaticns 'AIeN approuhc,. Co tz-i•'a J-Imic tes2ing. d nz:mlc testing,
a system is designed for a nonexpert rather th3,i an multiattrioutc J:la'ysi:.. acceptance by exoe-ts and
expert, but such use-dependent tesing was rarely 6une. qvuestionnaires ý,3 1,setI.

Despite the diversity, the systems were al! quttes- Man-, of the -n•n"
ilar in their goals and in the methodology used in ae- bhsed systems can be geueralized:
velopment. Most, but not all, of the systems performed * Issues concerning testing were not aisted earl" enough
a support function where high dollar costs or loss of in the development process. Not only is it important
life were not involved. Generally, the systems func- to detect errors early, it is also important to start
tioned as aids to a person making a decision, rather planning how the system will be tested. According
than as decision maker. Many of the systems were not to Bellman and Walter (1989), "preparing for testing
designed to outperform an expert, but to add consis- begins with system design." Building a testable
tency to a process routinely performed by many in- knowledge-based system is building a model and re-
dividuals within an organization. Few expert systems quires specifying acceptable performance ranges up-
were designed as a tutorial for a nonexpert. One of the front and following a sound development method-
systems designed to train new employees in an admin- ology. "Rapid prototyping is not an excuse for poor
istrative task seemed to have limited capabilities, plans and task analysis. quick fix or kludges" (Bell-
Rather than teaching the nonexpert the skills necessary man & Walter, 1989).
to become an expert, a user commented that the system * In a resource-constrained environment. it was difficult
gave "I year of experience 20 times." to test thoroughlt'. The experiences of Science Ap-

Most of the systems were developed through rapid plications International Corporation indicate that
prototyping. For the most part. requirements docu- V&V and testing can consume as much as half the
ments did not exist. Rather, the software either evolved project dollars and is usually one of the first areas to
from an existing software program or was created in- get cut when budgets get tight (Miller. 1989). Budget
formally to meet a need of a particular individual or consirainws may necessitate cutting back or com-
department within the organizations. Typically the pletely eliminating desirable software tests. For ex-
systems were developed using expert system shells ample. it may not be feasible to bring in an expert
(EXSYS. M-l, CLIPS, Ist Class. Level5, ART) or in who was not involved in developing the knowledge-
LISP, which many developers saw as a rapid prototyp- based system to help test it (Bachant. 1988)
ing language. When a system became a "final product," OQtten ivhat the knowl'dge-hased s i %w' should do
some developers saw a need to convert it to another was not clearlt dehie'd or inade expl•ct. Vithh added
language, such as Ada or C. This conversion is a po- to the difficulty of testing,. The importance of docu-
tential problem--one that could be very expensive and menting requirements is clearly stated in most of the
even infeasible. Furthermore, the conversion has im- literature, yet documented requirements rarely exist.
plications for testing, since much of the testing per- Culbert and Savely (1988) contend that "without a
formed on the original system will need to be repeated clear definition of what the system is supposed to
on the -onverted svy;'ccn do, it is literally impossible to understand how to

As stated earlier, most of these systems developed test it." Naser ( 1988), of the Electric Power Research
as prototypes. However, in some cascs there were plans Institute, states that "V&V is hampered by the lack
to convert the prototype to an operational system. The of stable documentation" and that a reoqurements
requirements documents for these systems geacrally document should "provide external performance
seemed to focus on system integration issues- u, h : goals that can be confirmed b% tests," Further re-
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TABLE 1
T*Sng Strmt•ogI

Charactenstics of

Testing Strategy Description Development Environment

PROTOTYPE FOREVER The expert receives the latest version of the * Informal development
software and uses it in an actual work setting. environment
The expert monitors the system in use and e No documented
provides feedback on the interface, the requirements
explanation facility, and the reasonableness of * Developed for in-house use
the system's outputs over time. by a particular expert

* Developer and expert user
have a Dose working
rblationship

e System provides a support
function where cost of
error is low

AGREEMENT As the system is being developed, it is tested with e Informal development
(The ultimate standard is the expert. When an initial version of the system envwonment

agreement between the is complete, a sample of test cases is selected * No documented
system and a panel of based on actual data. The test cases are given requirements
experts on a set of test to a panel of experts who are asked to * zystem developed for in-
cases) determine the outcome. The same set of test house use

cases is presented to the system and the system - Expert is not always the
determines the outcome. The system passes the intended user
"test" if the system and panel of experts agree * System serves as an aid to
on the outcome for some percentage (85%, for a decision maker rather
example) of the test cases. The system is put than as a decision maker
into use and monitored over time.

COMPLIANCE Test cases selected based on actual data from a * Informal development
(The ultimate standard is previous year where the outcome is known. environment

compliance with a format Those cases are presented to the system and * No documented
specified by regulations) the appropriate changes are made. Another set requirements

of test cases is selected from current data where 9 System designed to meet
the outcome is not yet known. These cases are an in-house need
presented to the system and the output is 9 Rules in the knowledge
correct if it complies with the relevant base are based on
regulations. regulations

o System performs a support
function and is designed
to add consistency to an
existing inconsistent
process

SATISFACTION The developer examines the knowledge base for * Relatively informal
(The ultimate standard is the missing rules, rules that can be collapsed, and development environment

satisfaction expressed by rules that are not being fired. The expert * No documented
the end user and/or expert) assesses the correctness of the rules, the quality requirements

of the explanations, and the quality of the * Developer and user have a
answers. The user assesses his or her ability to relatively distant
interface with the system, the timeliness of the relationship
response, the reasonableness of the outputs and * System designed to
explanations, and how the system fits in with the function as an aid to the
operating environment, decision maker

CASE-DEPENDENT The developer examines the knowledge base. * No documented
(The final assessment of how assesses the effect of adding rules, determines it requirements

well the system is doing is rules can be combined, and looks for errors. A e Relatively informal
dependent on agreement large sample of test cases is selected that development environment
with the expert using a approximate the population of cases the system * Expert is available for
sample of test cases that will receive. The expert assesses the answer to development and testing
were also used in test cases without using the system. Then, the * The system is designed
development) expert uses the system to obtain outputs (all of primarily to add

the expert's actions are saved). The saver Jata consistency to an
reflecting the expert's actions are analyzed and existing process
changes are made to the knowledge base. It is
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TABLE 1 (ctd,) 
Characterstics of

Testing Strategy Description Development Environment

necessary for the expert and system to agree
80% of the time. The system is then tested with
the intended users (who are not experts). The
nonexperts interpret the input data from
summary sheets and the differences in data
input between the expert and nonexpert are
examined and apprpriate changes are made to
the system.

ORGANIZATIONAL TESTING The interface is iteratively evaluated by ul.imate e Research-oriented
(The ultimate goal is to have end user. Interface evaluation includes an development environment

the system-a training assessment of screen design, feedback - Careful, planned
system-improve message placement, scrolling, features, menu development
performance in an naming, design and actions The system 's & Sophisticated system
organizational setting) evaluated in a classroom setting by observing designed as an intelligent

the system in use and administering training aid in r
questionnaires. Observers videotape and tave classroom setting
notes to assess how both students and
instructors use the system in an actual
classroom setting. Questionnaires are
administered to both students and instructors to
gather information regarding features used,
perceived usefulness, perceived problems, and
general feelings. An experiment, using subjects
in an actual classroom environment, is designed
to assess the effect of using the system on
student performance.

FIELD TESTING Each prototype is tested with past cases from a Requirements document
(The ultimate standard is to saved actual data. Test in a similar operational * System developed by

assess whether the system environment for 3 months and obtain feedback outside contractor
actually reduces time and on system effectiveness and user interface. * More formal development
cost of the existing process Appropriate changes are made to the system. environment
in the field) The system is then run in parallel to the existing * System designed to reduce

process in the intended operational environment time and cost of an
for approximately one year. During the parallel existing process

test, assessments are made as to how well the
system is meeting the goals stated in the
requirements document.

MULTI-FACETED Developer performs comprehensive static analysis * Formal development
(The ultimate goal is to test all of the knowledge base using automated tools. environment

aspects of the system) Dynamic testing is performed to test the system * Documented requirements
with an expert using a comprehensive set of test e Documented test plan
cases not used in development. Multiattribute * Specially developed tools
analysis is used to obtain subjective measures for static analysis
for system performance. System is tested with
"developer" experts as well as outside experts.

Questionnaires a(e administered to both
developer experts and outside experts.

%Larch sponsored by the I-.Iccric Power Research In- expectitions. I Ic rcquirements document should

slitule inoicates that there may he as many as five provide the criteria used in the V&V process and

different groups interested in the s~lcm, s wc,ill serve as an agreement between tlh' different groups

quality-the development team, the sponsors. the by explicitly stating the performance requirements

users, the experts used in development, and the mar- (Kirk & Murray, 1988). Rushby (1 988) suggests that.

kct experts or critics. The different groups may all while it may be too difficult to explicitly define what

have different interests and different pertformance the system should do up front. it may be entirely
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possible to "specify certain undesired or safety prop- system-testing attributes such as correctness ot the
erties quite sharply." This suggests that the require- outcome was not as important as testing other attributes
ments document should define the "minimum corn- such as the correctness and clarity of the reasoning,
petency requirements" and tests should be performed the usability of the system. and how well the system
to ensure, that at the very least, the system conforms fit into the intended operational environment. Testing
to these criteria, included using the system in an actual classroom set-

"* The complexity of the knowledge base and the lack ting, videotaping the system in use, and taking extensive
of tools Jo& static analysis were problems. Although notes while observing the system in use. Both the stu-
static analysis tools are discussed in detail in the lit- dcnts and instructors were administered questionnaires
erature, few testers have access to such tools. Most designed to assess features used, perceived usetuinss.
shells do not provide extensive utilities for static perceived problems, and general feelings about the sys-
analysis and most developers do not have sufficient tem. Additionally, an experiment using a control group
time or resources for an extensive manual analysis and a test group of students was conducted to deter-
of the knowledge base. One exception is CRSV (Cross mine whether or not the system actually improved stu-
Reference Style and Verification Tool) which has re- dent performance. Generally, the other testing strate-
cently been made available and is distributed with gies did not sufficiently address either usability or fit
CLIPS. with the organization.

"* The unavailability of the expert for testing was a Many of the testing strategies (prototype forever.
problem. Many respondents commented that, al- agreement, compliance) did not directly address either
though they expected the experts to be available to the structure or content of the knowledge base. The
test the software, they were not. Generally, if the satisfaction and case-dependent strategies insufficiently
experts were unable to test the system, the project addressed testing the knowledge base due to the lack
failed. of automated tools for static analysis. Most of the de-

velopers realized the importance of structural or static
2.3. Determinats of Testing testing, but without automated tools, lacked the re-

sources or time to do as much testing as they would
Generally, the level of testing performed on knowledge- have liked. Only the multifaceted testing strategy used
based systems seemed to depend on four factors: in- an automated static analysis tool especially adapted
formation available on testing methods and procedures, for the particular application.
time constraints, resource constraints, and churacter- Most of the knowledge-based systems made use of
istics of the development environment (such as for- one of the many expert system shells available on the
mality and accessibility of the developers to the users). market, and no testing was aimed specifically at the
Typically, when the developer and user had a close inference engine of the shell. Most developers assumed
working relationship, the system was put into use and that, when they purchased a shell, the inference engine
the developer worked with the user to implement the had already been tested thoroughly. This may not be
required software changes on an "as-needed" basis, the case. The literature indicates that perhaps only one

Some of the strategies used to test knowledge-based inference engine, CLIPS, has been formally validated
systems along with corresponding characteristics of the (Culbert & Savely, 1988).
development environment are listed in Table 1. At The testing strategy of changing inputs, obtaining
some level, all of the testing strategies addressed cor- outputs, and asking the expert if the results are rea-
rectness of the answer and correctness of the reasoning. sonable may be appropriate for small. expendable.
All of the systems were judged against some standard, nonautonomous, noncritical, in-house systems (where
although in many cases that standard was simply a the cost of an error and the cost of the system are ex-
vague notion of "correctness." For example, in the tremely low), in environments where the developer and
agreement-testing strategy, the system's output was the expert work closely together and the performance
stamped "correct" if' it agreed with the outcomes spec- of the system is continually monitored. But be pre-
ified by a panel of experts for 85% of the test cases. In pared: this system is likely to remain a prototype for-
case-dependent testing, great care was taken to select ever. When a knowledge-based system is to be used by
a set of test cases that approximated the kinds of cases a large number of individuals, to replace an existing
the system would be expected to handle in an opera- method for solving a particular problem, or to perform
tional environment, but all of the cases used in testing an important or critical function or where the cost of
were also used in development. With the field testing a system error may be high, more rigorous and thor-
strategy, the system was judged "correct" if it met a ough testing is necessary. One approach for more corn-
few performance criteria (such as a 30% reduction in prehensive test and evaluation may be the multiattri-
downtime) specified in a requirements document. bute framework recommended by Adelman and Ulvila

In one particular project-an intelligent tutoring (in press).
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2.4. MAU Approach to Ev'aluating a the accuracy ot the facts in the knowledge base. the
Knowledge-Based System i,ýcuracN of the embedded rules, the acceptability of

the knowledge representation scheme, the adequacy
of the source, and the modifiability of the knowledge

Adelman and Ulvila (in press) describe an evaluation base.
hierarchy that encompasses the following kinds of tests: IR Inference Engine. Specific tests are aimcd ii deter-
*Service Tests. Service tests address the design and mining the correctness of the inference engine.
portability of the computer system, computcr usage, Pefortnancc 74ýs Performance tests are aimed at
and system integration issues. determining huA well the system carries out its des-

SR Structural Tests of the KnorK'edge Base. Static I- ignated funictions. rhese tests can be divided into
structural testing is concerned with examining the functions for which "ground truth" answers exist and
underlying structure of the knowledge base, that is. those for which no &round truth exists. Where ground
the logical consistency and logical and functional truth exiSts, the performance of the system can be
completeness of the rules. Tests for logical consis- compared with a known standard. Where no grodnd
tency are aimed at finding and correcting redundant truth exists, we must rely on the judgment of experts
rules, subsumed rules. conflicting rules, and unnec- to assess the quality of the conclusion. Performance
essary if conditions. Trests for logical completeness measures should also include measures of response
are for finding unreferenced attribute values, illegal time and time to accomplish the task.
attribute values, unreachable conclusions, and dead IR Usabilityý Trs Usability measures incorporate a
ends in the knowledge base. Functional completeness number of factors that relate to how well the corn-
measures the extent to which the knowledge base puter is adapted to the needs of the user. Usability
addresses all the domain problems that the users have measures can be assessed by observation or opinion
to or need to address. survey. Measures of usability that can be observed

IN Content-Spectif ic Tests for the Knowledge Base. In are the extent of use, manner of use. and features
this type of testing, the domain expert is asked to used. Usability measures assessd by opinion survey
make judgments about the accuracy and adequacy include confidence in the system, ease of use. ac-
of the embedded knowledge. The judgments may be ceptability of the interface, acceptability of the results,
elicited individually with single experts or using scope of the application, adequacy and clarity of the
group techniques with multiple experts. In this cat- explanations, and impact on the organization.
egory of tests, the domain expert is asked to assess The characteristics or attributes described above were
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TABLE 2
Testing Attributes and Definitions

Higher-Level
Attribute Attribute Definition

KB STRUCTURE
Logical Redundant Rules Individual rules or groups of rules that essentially have the same

Consistency conditions and conclusions. Redundancy can bq due to
duplicate rules or the creation of equivalent rules (rule groups)
by wording variations in the names given to vanables. or the
order in which they are processed.

Subsumed Rules When one rule's (or group of rules) meaning is already
expressed in another rule (or group of rules) that reaches the
same conclusion from similar but less restrictive conditions.

Conflicting Rules Rules (or groups of rules) that use the same (or very similar)
conditions, but result in different conclusions, or rules whose
combination violates pnnciples of logic (e.g., transitivity).

Circular Rules Rules that lead one back to an initial (or intermediate)
condition(s) instead of a conclusion.

Unnecessary If Conditions The value on a condition does not affect the conclusions of any
rule.

Logical Unreferenced Attribute Values on a condition that are not defined: consequently their
Completeness Values occurrence cannot result in a conclusion.

Illegal Attribute Values Values on a condition that are outside the acceptable set or
range of values for that condition.

Unreachable Conclusion A conclusion that cannot be triggered by the rules combining
conditions.

Dead Ends Rules that do not connect input conditions with output
conclusions.

Functionai All Desired Inputs The knowledge base can handle all input conditions that need
Completeness to be addressed.

Application/Conclusion The knowledge base can trigger all output conclusions that
Completely Covered need to be addressed.

Identified Knowledge The rules in the knowledge base can tell the user if input
Limitations conditions currently being processed cannot be addressed.

Analogously, if the expert system is such that a user can
specify a conclusion in order to identify the input conditions
that would generate it. an t'xpert system that was
knowledgeable of its limitations would tell users if a
conclusion currently being processed as input could not be
addressed.

KB CONTENT
Accuracy & Accuracy of Facts The quality of the unconditional statements in the knowledge

Adequacy base.
Accuracy of Rules The quality of the conditional statements in the knowledge base

representing expert judgment.

Knowledge Representation Whether or not the scheme for representing knowledge is
Acceptability acceptable to other (a) domain experts and (b) knowledge

engineers.
Adequacy of Source Quality of the persons or documentation used to create the

knowledge base.
Modifiability of Knowledge The extent to which the knowledge base can be changed.

Base
-Control Over The extent to which changes in the knowledge base are limited

to certain classes of users.
-Expandability (by The extent to which the knowledge base can be increased (or

human/machine) decreased) by users (or their representatives) or by the
knowledge base (i.e., the machine) itself through learning.

SERVICE
Computer System Design The extent to which the expert system runs on the approved

computer hardware and operating system and utilizes the
preferred complement of equipment and features. In some
cases, the original system requirements may specify or
describe the preferred or required system. In other cases, the
tester may need to survey available equipment at the
intended installation.

Portability The ease with which the expert system can be transferred to
other computer systems.
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Higher-Level
Attribute Attribute Definition

Computer Usage Set-Up Time The amount of time required for the computer operator to
locate and load the program (if any) and the time to activate
the program. Set-up time should be measured in tU.
expected operating environment (i.e., how the program will
actually be implemented).

Run Time The aroont of time required to run the program with a realistic
set of input data. This factor refers only to the time that the
c•uo..utur [. ogrrm ýakes .o run: IN time needed for the
progranmmer ard '.:ser ic !reiudec unc " doyne•ma, testing
fLctcr3

Space Requirements The arnour, cf F!At, and tdls- space required by the progaam.
Reliability (Hardware) Percentage of time the computer system could be expected to

be operating effectively.
Capability (Hardware) The computer system's total amount of RAM and disk space.
Effect of Feature Use/ The extent to wh ch moving from varous parts of the prograrm

Jumping causes errors.
Degradation (Graceful?) Uow well tl'.e progra-n 'a) - d'a 'd "'alys'; -rtdlb,

permits continuation af .rr ai unexpected program o,, systeta
crash or oower outage.

Handling Input Errors The extent to which the program (a) prohibits a program crash.
and (b) tells the user what to do after an input mistake.

System Formats The extent to which the program uses input and output formats
Integration that are consistent with the intended use. This includes any

mandated or standard formats that are specific to the
intended , ,ýer organization.

Data Requirements The extent to which the program's data requirements are
consistent in content, quantity, quality, and timeliness with
those available to the intended user organization. The
program should also be able to interact with specified and
appropriate databases and communications systems.

Documentation The adequacy of material regarding the program's use and
maintenance. User's manuals should be complete and
understandable. Copies of computer code and its supporting
documentation should be complete and understandable, and
should allow maintenance by the organization. (All applicable
software documentation standards should be met.)

Skill Requirements The extent to which the program can be operated by
appropriately skilled individuals. The appropriate skill
requirement includes job description, users' technical
background, and training requirements. The appropriate level
may be specified in requirements or may be determined by
reference to the organizational setting of its intended use and
to the personnel assigned to that setting.

PERFORMANCE
Ground Truth Speed The amount of time it takes a user working with the expert

system to solva representative problem scenarios.
Accuracy (d*) The degree of overlap in the distributions of belief values when

the hypothesis is true versus false (see Lehner, 1989).
Bias (B*) The difference in the proportion of false negatives (hypothesis is

true but system says false) to false positives (hypothesis is
false, but system says it's true) (see Lehner, 1989).

Judgment Speed: Response Time The judgments of users regarding the adequacy of the amount
of time the expert system takes to react to user inputs.

Speed: Time to The judgments of users regarding the adequacy of the amount
Accomplish Task of time required to perform the task when using the expert

system.
Quality: Quality of The judgments of users and experts regarding the system's

Ai;•5-sors ca.pability.
Quality' Quality of The judgments of users and experts regarding the adequacy of

Reasons the system's lustification for its answers.
USABILITY

Observable Extent of Use How much users employ the expert system to perform the task
(e.g., the proportion no the time that the system was used for
ask accomplishment)
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TABLE 2 (ctd.j

Higher-Level
Attribute Attribute Definition

Manner of Use The way in which users employ the system and its features.
including (1) the procedures to access different modules, (2)

the way that intermediate and final outputs are incorporated
into the users results, and (3) the use of man-machine
interfaces.

Features Used The extent to which different aspects of the expert system are
employed by users.

Opinions Confidence How confident users feel in taking actions based on working
with the expert system.

Ease of Use How easy users judge the system is to use after they have
completed training and become familiar with the system.

Acceptability of the The extent to which users assess that they and the system are
Person/Machine performing the tasks/activities for which they are best suited.
Interaction Process

Acceptability of the The users' judgments regarding the adequacy of the systems
Results capability.

Acceptability of The users' judgments regarding the adequacy of the systems
Representation Scheme way of presenting knowledge.

Scope Scope of Application The users' judgments regarding the adequacy of the expert
system in addressing domain problems.

Explanations Adequacy of Presentation/ The users' judgments regarding the acceptability of the
Trace system's presentation of its reasoning process.

Transparency of Expert The extent to which the system's reasoning process is clear
System and understandable to its users.

Organizational Impact on Work Style/ The judgments of users regarding the impact of the expert
Impact Workload, Skills & system on (a) how they do their job, or (b) the skills and

Training training required to perform it effectively,
Impact on Organizational The judgments of users regarding the impact of the expert

Procedures & Structure system on the organization's operations.
Input-Output The users' judgments regarding the adequacy of all the expert

system's displays except those tracing the reasoning
process.

put into a multiattnbute utility (MAU) model foreval- tance to each other as well as their relative importance
uating a knowledge-based system (Ulvila. Lehner, at the various stages in the system's life cycle. The MAU
Bresnick. Chinnis. & Gumula. 1987). Multiattribute evaluation hierarchy is displayed in Figure 1. The eval-
analysis provides an overall framework for evaluation uation hierarchN encompasses both verification and

of a system where multiple objectives are important, validation. In this MAU framework verification in-
MAU provides a formal structure for conceptualizing cludes all attributes falling under "*Knowledge Base,"
measures of effectiveness (attributes), a mechanism for "Service." and "Inference Engine." while validation

decomposing global measures into component dimen- includes "Performance" and "Usability." The defini-
sions and for reintegrating them to 'ield a summary tions for each attribute are presented in Table 2.
measure of value. Adelman and Donnell (1986) present
a case study where multiattribute analysis was sue. 3. LESSONS LEARNED
cessfully used to evaluate an expert system prototype.
In the study. Adelman and Donnell conclude that the Most of the lessons from the U.S. Army's experience

MAU framework evaluated the expert system rigor- in testing knowledge-based systems are applicable to

ously and allowed for empirical data to be collected all expert systems development. Generally, the lessons

that could be used to improve the design, development, relate to requirements and issues that were not raised

and implementation of decision support software. early enough in the development process. Emphasis
When applying MAU to the evaluation of an expert was generally placed on developing a product that could

system, the system is conceptually decomposed into be seen. touched, and operated. As a consequence.

attributes that can be defined well enough so that mea- documentation and testing were often "crowded out.'-

sures of how well the expert system performs on each The list below summarizes some of the lessons learned

attribute can be obtained. The attributes can be as- and makes some suggestions for developing testable

signed different weights to assess their relative impor- knowledge-based systems.
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SHOULD BE EMPHASIZED FOR TESTING

FIGURE 2. Requirements generation process.

I. Specify system requirements. It is impossible to test tial for thoroughly testing a knowledge base and
the system without a clear understanding of what should be available to the developers of knowledge-
the system should do. If it is too difficult to do up based systems. Since there are no industry standards
front, do it later. Develop a prototype and recognize for knowledge-based systems, specify formats,
it for what it is-a means to generate requirements. naming conventions, procedures for commenting
Figure 2 displays an outline for a possible require- rules, and other programming standards for devel-
ments generation process. opers in a particular organization to use when

2. Give the knowledge-based system an apprenticeship building knowledge bases and knowledge-based
period in the intended operating environment. Keep systems.
a library of cases presented to the system, observe To date, successful applications seem to be limited in
the system in use, and monitor its performance. An scope and solve relatively well-defined problems. Many
apprenticeship period may be essential for assessing of those interviewed seemed to think that the future
how the system will perform in an operational en- of Al is in "little modules of Al" as part of larger sys-
vironment and for findiny errors not found in pre- tems, rather than in large Al systems. Generally, pro-
vious testing efforts. totypes are regarded as useful and valuable for "study-

3. Instill order. Establish a set of products (tools, shells) ing the problem" but do not necessarily lead to oper-
to use, provide training, and build your own tools ationa' systems. Prototyping may be nothing more than
to support testing if the vendor will not provide one step on the way to defining system requirements.
them. Automated tools for static analysis• arc :z;- To develop opcrational, usable, and testable systems.
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ABSTRACT

This paper explores the use of classical statistical procedures
for evaluiting the knowledge base of an expert system that out-
puts quantitative belief values. Statistical procedures can be
used to estimate the relative frequency that an expert system
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hypothesis, and (b) do not provide strong support for any
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minimum number of test-problems required to evaluate an expert
system.
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A NOTE ON TnE APPLICATION OF CLASSICAL STATISTICS
TO EVALUATING THE KNOWLEDGE BASE OF AN EXPERT SYSTEM

Paul E. Lehner and Jacob W. Ulvila

1.0 INTRODUCTION

In an earlier paper (Lehner, 1989), an empirical approach was
presented to evaluating the knowledge base of an expert system
that outputs quantitative belief values (e.g., probability,
Shaferian belief, fuzzy membership, certainty value, etc.). That
paper emphasized the use of a nonparametric statistical proce-
dures to characterize the extent to which each node in an in-
ference network (or other knowledge structure) distinguishes be-
tween true and false instances of each hypothesis tested at that
node. This paper extends the discussion in Lehner (1989) by
demonstrating how parametric procedures from classical statistics
can be used in the same way. The justification for for using
these procedures is also discussed.

1.1 The Signal Detection Analogv

As noted in Lehner (1989) an expert system that evaluates
predefined hypotheses is loosely analagous to a signal detector.
A signal detector is any system that functions to discriminate
occurrences from nonoccurrences of a signal. As shown in Figure
1, the signal detection problem is often characterized as one of
receiving a set of sample values (perceived signal strength) from
one of two distributions (signal exists vs. signal does not
exist), and on the basis of this information deciding from which
of the two distributions the signals were drawn. Usually this
decision is based on whether the observed signal strengths exceed
a threshold. The decision threshold is determined from back-
ground knowledge of the underlying distributions. The sen-
sitivity of a signal detector is often measured in terms of the
normalized difference between the means of the two distributions
(d'). If d' is large (small), then the error rate of signal/no
signal decisions will be small (large).

In an expert system inference network (or other knowledge struc-
ture) each node represents two or more mutually exclusive
hypotheses. Most expert systems generate a belief value

2
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(probability, certainty level, Shaferian belief, etc.) for each
hypothesis. Consider a node that discriminates two hypotheses,
H1 and H2 . When Hi is true, we would generally expect the belief
value in H, bel(Hl), to be higher than when H2 is true. The
user's problem is to use the belief values output by the expert
system, along with other available information, to select a
hypothesis and act accordingly. If there is a large (small) dif-
ference between the mean bel(H,) value when H, vs. H2 is true,
then the expert system should ie useful (useless) in helping a
user to discriminate these two hypotheses.

1.2 Measures of the Usefulness of an Expert System

From a users perspective, an expert system is useful if it helps
discriminate instances when different hypotheses are true. One
approach to evaluating a system is to estimate the proportion of
times the expert system will generate advice that is useful in
discriminating among alternative hypotheses. In this section we
show how this can be done. In this section and in Section 2.0 we
will make several assumptions. Each assumptions will be dis-
cussed and/or relaxed in Section 3.0.

Assume an expert system that distinguishes between two
hypotheses, H and -H. Assume also that the expert system genera-
tes belief values that satisfy bel(H)=l-bel(-H). (Call these as-
sumptions Al and A2 respectively.) Consider Figure 2, which con-
tains two distributions [or densities] P(bel(H)IH) and
P(bel(H)I-H). Two thresholds have been set, U and L. Depending
on how a user utilizes an expert system, Figure 2 has two dif-
ferent interpretations.

First, the expert system may be utilized to partially automate
the inference process. That is, if the expert system outputs
very high (low) belief values then the user simply acts under the
assumption that H (-H) is true. In this context, U and L can be
interpreted as decision thresholds. If bel(H) is greater (less)
than U (L), then the user concludes H (-H). Otherwise the user
is uncertain (UNC), and proceeds to collect additional evidence.
Of course, complete automation occurs when U=L.

Alternatively, the user may view the expert system as a source of
evidence. That is, the user combines the expert system output
with other data and knowledge to make his or her own inferences.
In this context an important question to ask is "How often does
the expert system output strong evidence for the correct
conclusion?" One standard approach to measuring the strength or
diagnosticity of an item of evidence is by a likelihood ratio:

4



P(bel (H)tH)
LR--

P(bel (H) I-H) .

If LR is high (e.g., greater than 10) then the report "bel(H)" is
strong evidence for H vs. -H. 1 I.R is low (e.g., less than .1)
then the report "bel(H)" is strong evidence for -H.

The reason that LR is a standard measure of evidential value is
that most theories of rational induction (i.e., proper degrees of
belief) recommend the use of Bayes' rule for updating (see Mor-
timer, 1988). This rule states that a persons relative degree of
belief in H vs. -H, given a new piece of evidence E, should be
determined by

P(HIE) P(EIH) P(H)
P(-HIE) P(EJH) P(-H)- ,

Posterior Odds LR * Prior Odds.

U and L in Figure 2 can be interpreted as thresholds of strong
evidence. That is, if bel(H) is greater (less) than U (L) then
the expert system has output strong evidence for (against) H. If
bel(H) is between U and L, then that output does not provide
strong evidence in either direction. That is, the user will need
to base his or her decision on other factors or be driven by
priors.

Consequently, whether the user chooses to utilize the expert sys-
tem to partially automate inference decisions or as a source of
evidence, Figure 2 provides a way of characterizing user/expert
system interactions.

Consider P(bel(H)J-H), the distribution of belief values when H
is false. Given U and L we can specify three probabilities:

P(bel(H)<LJ-H) <-- probability of true negative
P(U>bel(H)>Lj-H) <-- probability of uncertain output
P(bel(H)>UI-H) <-- probability of false positive.

Similarly

P(bel(H)<LIH) <-- probability of missed positive
P(U>bel(H)>L'H) <-- probability of uncertain output
P(bel(H)>UjH) probatility of true positive.

5
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Define P to be the probability that the expert system will gen-
erate belief values that strongly support the wrong conclusion
and P to be the probability that the expert system will generate
belief values that do not provide strong support for either con-
clusion. From the above six probabilities we know that

PE = P(bel(H)<LJH)*P(H) + P(bel(H)>UJ-H)*(l-P(H)) [I]

and

PU = P(U>bel(H)>LIH)*P(H) + P(U>bel(H)>LI~H)*(I-P(H)) £2)

where P(H) is the probability (anticipated relative frequency) of
sampling from the H-true distribution.

Together PE and PU are two aggregate measures of the usefulness
of an expert system. If PE is relatively high, say .1, then the
expert system is generating outputs that strongly support the
wrong conclusion about 10% of the time. If PU is relatively
high, say .3, then the expert system is generating useless out-
puts approximately 30% of the time. From these two numbers we
know that I-Pu-PE is a measure of the proportion of times the ex-
pert system will strongly support the correct conclusion.

2.0 USING CLASSICAL STATISTICS

One of the objectives of evaluating an expert system is to assess
the extent to which that expert system can help a user to make
correct inferences. Although different users will set different
U and L thresholds, one can still ask whether it is possible to
set thresholds where P and PU are simultaneously low. If this
cannot be done, then the expert system cannot be very useful in
as much as the user must either tolerate a high error rate or a
high rate of outputs in the uncertain region.

To estimate the extent to which PE and P can be simultaneously
low, it is useful to make several simplifying assumption. They
are as follows.

A3) Given each hypothesis, the distributions of belief values
are normally distributed.

A4) The distributions of belief values have equal variance.

A5) The U and L thresholds are symmetric. This means that

P(bei(H)>Ui-H) = P(bel(H)<LJH).

7



2.1 Estimating PE and PU

Since the thresholds are symmetric and the two normal distribu-
tions have equal variance, it follows that PE and PU are now in-
dependent of the relative frequency of sampling from each dis-
tribution. Specifically,

andPE = P(bel(H)>UI-H) = P(bel(H)<LIH),

PU = P(U>bel(H)>LI-H) = P(U>bel(H)>L H).

In addition, from these assumptions it follows that

(M1 -M2 )/s = z(l-PE) + Z(I-PE-Pu), [3]

where M1, M2 , s are the means and standard deviation of the two
distributions, and z(X) is the z-score for X. From this it can
be seen that any procedure for estimating the means and standard
deviation of the two distributions will also provide an estimate
of PE and PU.

Consequently one can specify a straightforward test procedure fo-
evaluating an expert system that discriminates H and -H. First,
identify two representative sources (H-true vs. H-false) of pos-
sible test problems. Randomly select problems from each source.
Run the expert system against each problem and do a t-test com-
parison of the results. The t-test analysis will output an es-
timate of the mean and standard deviation of each distribution,
an estimate of the difference between the means of the two dis-
tributions and a standard error of the estimate for this dif-
ference. From these three estimates, P and PU can be estimated
by using equation [3]. An example of this is provided in Section
2.3 below.

2.2 Using PE and PU to Determine Sample Size

Although the above procedure is straightforward, we still need to
determine the number of test problems required. As it turns out,
the PE and PU measures can be helpful in making this determina-
tion. A standard results from classical statistics (see Hays,
1973, p. 417-422) will be useful here. Namely

2[z(l-4 - 2

N-=--------------
[(M1-M2)/s]2



where N estimates the number of test problems per condition
needed to guarantee that if the difference between the two dis-
tributions is at least (Ml-M 2 /s), then there is at least a 1-)&
probability of obtaining signilioance at tne o level in a one-
tailed t-test of the null hypothesis of no difference.

Using this equation we can determine a minimum sample size for
both groups by specifying the following parameters:

max PE - a maximum acceptable error rate,
max PU a maximum acceptable rate of ambiguous results,

oý - significance level for t-test
I -(g - the power of the t-test.

Given these numbers, the minimum sample size for each group is
derived as follows:

2[z(l-ot4) - zo]S-2

[z(l - max PE) + z(l - max PE - max PU)]

If PE + PU < max PE + max PU, then the probability of obtaining a
statistically significant difference (at the o< level) between the
two groups is Ž (1- 4). As will be illustrated below, using
this equation will often result in a minimum sample size that is
very small (around 5 tests for each hypothesis in a node).

2.3 An Example

Assume that we have been given the responsibility of testing an
expert system with the simple inference network shown in Figure
3. In this inference network there are three evidence items
(evidl, evid2 and evid3), one intermediate hypothesis (ihypl),
and one goal hypothesis (ghypl). Although the analysis does not
depend on how belief values are calculated, we note here that
bel(ihypl) is a linear function of bel(evid2) and bel(evid3), and
bel(ghypl) is calculated by performing a relative maximum entropy
update given new values for bel(evidl) and bel(ihypl).

Our first task is to specify a minimum sample size. As
evaluators we make the following judgments

(I) An error rate greater than 5% is unacceptable. If the error
rate is larger than this, users will simply discard the sys-
tem.

9
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(2) The system should not generate ambiguous results more than
30% of the time. Beyond this level, using the system is
considered to be more trouble than its worth.

(3) Set d,= .05. A level commonly used.

(4) Set (1 - A) = .90. If indeed the system satisfies (1) and
(2) above, then the probability of obtaining one-tailed
t-test significance at p<.05 is .9 or greater.

From these four judgments, we get

max PU = .30, max PE= .05, 0 = .05, and (1 -,g ) .9.

This gives us

2[z(l-o() - zýA)) 2  2(1.65 - (-1.28))2
N= ---------------- = ------------------ -- 4.12.

[z(l-PE) + z(l-PE--Pu)] 2  [1.65 + .39)2

So the minimum sample size is approximately four test problems
per condition. Even though this seems like a small sample size,
if the difference between the two distributions is substantial
(i.e., difference between means sufficient to give Pf+Pu<.35),
then there is a 90% chance that this small experiment will gener-
ate a t-test result with p<.05. Consequently, it is unlikely
that the expert system, if it satisfies these criteria, will not
exhibit at least some difference between the two distributions.

We decide to be "conservative" and let N=8.

After running the 16 randomly selected tests we get the results
shown in Table 1. A standard t-test applied to ghypl indicates a
statistically significant difference between the two sample dis-
tributions (pS.00005). Clearly the expert system has achieved
some discrimination between H and -H.

In addition, we estimate a minimum value for PU by

z(l-max PE) + z(l-max PE-est[PU]) = est[(M1 -M 2 )/sJ.

The observed mean difference is .119, and the estimate of the
standard deviation of the distributions is .044. This give us

z(.95) + z(.95-esttPu]) = est[MI-M2 )/s]

1.65 + z(.95-est[Pu]) = .119/.044

z(.95-est[Pu]) = 1.05

i1



.95-est[Pu] = .85

est[Pu] = .1

TABLE 1
SAMPLE TEST RESULTS

Group Output Belief Values
(gypl-true = 1) evidl evid2 evid3 ihypi ghypl

0 .4 .56 .61 .59 .39
0 .4 .43 .28 .36 .33
0 .33 .78 .29 .54 .36
0 .26 .23 .33 .28 .28
0 .48 .26 .32 .29 .34
0 .24 .34 .36 .35 .29
0 .29 .54 .78 .66 .38
0 .48 .48 .34 .41 .37
1 .69 .21 .89 .55 .45
1 .8 .76 .56 .66 .5
1 .44 .89 .48 .69 .42
1 .61 .76 .94 .85 .5
1 .87 .55 .86 .71 .53
1 .59 .56 .4 .48 .41
1 .76 .48 .69 .59 .47
1 .68 .49 .23 .36 .4

Finally, a 90* confidence level for the minimum value of PU can
be estimated by (a) calculating the 90% confidence level for the
minimum mean difference and (b) repeating the above procedure.
In the case of ghypl, the observed difference was .119 and the
standard error of the estimate of the difference was .022. Con-
sequently, the 90% confidence level for difference is .119 -
.022*t(.9, df=14), which is .091. This gives us an "upper bound"
on PU of

1.65 + z(.95-est(Pu]) = .090/.044

z(.95-est[Pu]) = .40

.95-est(Pu] = .66

est[Pu] = .29.

Thi= procedir '-an be repeated for alternative levels of max P
from which one can see the tradeoff between PE and Pu" This is
illustrated in Table 2.



TABLE 2

TRADEOFF BETWEEN PU AND PE IN SAMPLE PROBLEM

max PE est PU

.1 -. 02*

.05 .1

.025 .21

.•01 .35

.1005 .45

.001 .56
• indicates distributions are sufficiently separated

that a single threshold can be set where

P(bel(H)>LI-H) = P(bel(Hj<UIH) : max PE

A similar analysis can be performed for all the nodes in the net-
work. The t-test results for each node in the sample problem are
summarized in Table 3. From this table we can draw several con-
clusions.

Overall, the expert system performs well. As far as the goal
node (H vs. -H) is concerned, a user willing to tolerate a 5% er-
ror rate, should find the expert systems advice useful more than
70% of the time, and most likely around 90% of the time. These
results do support the evaluation hypothesis that PU<.3.

Regarding the other nodes in the network, it seems that most of
the discrimination is obtained from evidl, and that the other
nodes contribute relatively little to the overall accuracy of the
system.

TABLE 3
TEST RESULTS FOR ALL NODES IN SAMPLE PROBLEM

(max PE set at .05)

estimate estimate (max PE = .05)
standard standard 90% C.L.

node M1 - M2  deviation error est PU est PU

evidl .32 .116 .058 .08 .28
evid2 .135 .197 .099 .78 .86
evid3 .218 .222 .111 .69 .86
ihypl .176 .147 .073 .63 .81
ghypl .119 .044 .022 .1 .29
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3.0 RECONSIDERING THE ASSUMPTIONS

In Sections 1.0 and 2.0 several assumptions were made. They were

Al) The expert system only considers two hypotheses, H and -H.

A2) The belief values sum to one.

A3) The distributions of belief values are normal.

A4) The distributions of belief values have equal variance.

A5) The thresholds are symmetric.

Each of these assumptions are discussed below. Assumption A3
will be considered last.

3.1 Multiple Hypotheses

If there are just two hypotheses (H and -H), with belief values
that sum to one (A2), then bel(H) completely summarizes both
values. When there are more than two hypotheses, this is no
longer true. Given a belief value for one hypothesis, the belief
values for the other hypotheses can still vary. The implies that W
for each hypothesis, there is a multivariate distribution of
belief values. For instance, if the expert system discriminates
three hypotheses H1 , H2 and H3 ; then the output can be charac-
terized as a vector of belief values

b = <bel(H1 ),bel(H2 ),bel(H3 )>.

There are two ways to address the multiple hypothesis case. The
first is to perform a multivariate statistical analysis. The
thresholds then become hyperplanes in a vector space of possible
belief values. For instance, one might set thresholds Ui where
for each Hi the decision rule is to select H. if bel(Hi)>Ui. The
area defined by bel(Hi)<Ui for all i would then be the uncertain
region. PU is the probability of falling in the uncertain
region, while P is the probability that for some i, bel(Hi)>Ui
occurs when Hi is false. Conceivably one could generalize the
evaluation procedure described in Section 2.0 to address this
multivariate problem. We have not explored the details of this
generalization.

An alternative approach is to do a pairwise comparison of
hypotheses. This can proceed as follows. First define a
measure, belie, that summarizes the relative belief values of the
two hypothesea. For example we could set
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belij = bel(Hi)/[bel(Hi)+bel(Hj)],

or possibly

belij = (bel(Hi)-bel(Hj)).

Second, determine the minimum sample size required for each pair-
wise comparison. Third, select a sample size for each Hi that is
greater than the maximum of the minimum sample sizes required for
each pair comparison involving Hi. Finally, collect the test
data and compare each pair of hypotheses as discussed in Section
2.0.

3.2 Belief Values that do not SuM to One.

Many expert systems employ an uncertainty calculus where belief
values do not sum to one or where a range of possible values is
maintained for each hypothesis. For example, in a Shaferian sys-
tem of beliefs (Shafer, 1976), bel(H) is often interpreted as the
degree to which the existing evidence supports H; where it often
occurs that bel(H)+bel(-H)<l.

conceptually this case is similar to the multiple hypothesis
case. For each hypothesis, there is a multivariate distribution
of belief values. Consequently, the same techniques apply here.
In the case of Shaferian beliefs, for instance, it seems natural
that for each pair of hypotheses Hi and H., [bel(Hi) - bel(Hj)]
effectively summarizes the extent Lo whici the expert system
finds evidence that supports Hi vs. Hj.

3.3 Uneaual Variance

Assumptions A4, that the two distributions have equal variance,
is not essential. The main implication of violating this assump-
tions is that PU, but not PE, now depends on the relative fre-
quency of sampling from the two distributions. This can be seen
from equations [1] and [2].

If assumption A4 is not made, then the procedure described in
Section 2.0 needs to be modified to (1) estimate the variance of
each distribution of belief values separately, and (2) incor-
porate an estimate of the relative frequency of sampling from
each distribution. As long as the thresholds are symmetric, PE
is unaffected by unequal variances. However, PU will vary; al-
though its value is bounded by P(U>bel .>LIHi) and
P(U>bel >LHA), where 11 and H• are tWi two hypotheses being
compareda A conservative" estimate for (2) is one that pushes
the value for PU close to its maximum value.
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3.4 Nonsymmetric Thresholds

Assumption A5, like A4, is not essential. If A5 is violated,
then both P and Pp will depend on the relative frequency of sam-
pling from Vhe two-distributions. Consequently, if this assump-
tion is violated then the procedure in Section 2.0 must be
modified to incorporate a subjective estimate of the relative
frequency of sampling from each distribution. Note again that PU
is bounded by P(U-belij>LIHi) and P(U>belj >LIHA), while PE is
bounded by P(bel--<LIAi) and P(beli >UIH f3 Co sequently, a
"conservative" esiimate of the relalive frequency of sampling
from the H-true distribution is an estimate that pushes PU+PE
towards its maximum value.

3.5 Distributions that are not Normal

Assumption A3 is expedient. Although normal distributions are
prevalent in nature, there is no guarantee that belief values are
always distributed normally. Furthermore, there are procedures
for testing the hypothesis that a collection of sample points was
generated from a normal distribution. When the test data sug-
gests that the distribution is not normal, then one should con-
sider alternative procedures. 3
It should be noted, however, that testing an expert system is of-
ten an expensive proposition. As a result, the sample size for
each distribution is often small (less than ten). Given a small
sample size, it is unlikely that a sample distribution will lead
to rejecting the assumption of normality, even when the true dis-
tribution is not normal. When the normality assumption is incor-
rect, we are unlikely to detect it.

This leaves us with a quandary - routinely use weaker procedures
that make fewer assumptions (viz., nonparametric statistics), or
simply assume normality and accept the occasional errors in
evaluation that this assumption will entail. In our estimation,
for small samples nonparametric procedures (e.g., Lehner, 1989)
are too weak to be of much use. Consequently, we recommend the
second option.

4.0 Summary and Discussion

In this paper we have examined the use of classical statistical
procedures for evaluating the knowledge base of an expert system.
Statistical procedures can be used to estimate the relative fre-
quency that an expert system will output belief values that (a)
strongly support an incorrect hypothesis, and (b) do not provide
strong support for any hypothesis. These procedures can also be
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used to estimate the minimum number of test problems required to
evaluate an expert system. As it turns out, the required number
of test problems per hypothesis is often less than ten.

4.1 ComDarison to ither Measures

Other approaches have been pioposed to evaluating belief values.
As discussed in Levi (1989), for example, probability scoring
rules are commonly used to assess the accuracy of probabilistic
judgments. The most commonly used scoring rule, initially
proposed by Brier (1950), is the mean probability score (MPS).
The MPS is simply the average squared error of predictions vs.
outcomes. For example, suppose that on three consecutive days a
weather forecaster predicts a 20%, 60% and 80% chance of rain.
In fact, it rained only on the third day. Then

MPS = [(.2-0)2+(.6-0)2+(.8-1)2]/3 = .147.

Our approach differs from the use of probability scoring rules in
two ways. First, we have focused on measures that have a
"behavioral" interpretation. PU and P tell us something about
how a user can use an expert system. in contrast, the behavioral
implications of "MPS=.147" are unclear. Second, probability
scoring rules measure the deviation of outcomes from the absolute
belief values. This presupposes that the belief values are prob-
ability estimates. Furthermore, it may fail to measure dis-
crimination. Note, for instance, that in Table 1 bel(ghypl) is
almost always less than .5, even when ghypl is true. Conse-
quently, the MPS score for this expert system would be very low,
even though the expert system effectively discriminates when
ghypl is true vs. false.

An alternative approach is to estimate the expected cost of in-
correct diagnoses (e.g., Levi, 1985; Kalagnanam and Henrion,
1988, Heckerman, 1987). However, this requires that the
evaluator (a) set one or more specific thresholds, (b) estimate
the cost of different types of errors, and (c) assume the user
has no other source of information on the inference problem (else
(see Lehner, et.al., 1989) combined user/expert system combina-
tion may have a very different pattern of errors than inferences
based on the expert system alone). The approach presented in
this paper, while similar in spirit, requires fewer assumptions
and judgments.

A third approach involves the use of a linear regression analysis
to identify any linear relationships between the cues (eviaence
items) and (a) human expert judgments and (b) the correct diag-
nosis (see Levi, 1989 for discussion). The argument here is that
an expert system is useful only if both (a) and (b) reveal a
large nonlinear component, and that expert judgments effectively
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predict the nonlinearity between the cues and correct diagnosis.
If these conditions are not met, then a complex expert system
could be replaced by a much simpler linear model. There is no
"added value" in building an expert system. Although this added
value approach clearly has merit, the approach presented in this
paper addresses an orthogonal issue. Our performance measures do
not compare expert system judgments with those of a human expert.

The same is true for other attempts to use statistical tests
(e.g., paired t-tests) to compare expert system and human expert
judgments (O'Keefe, et.al, 1987). Our comparison is not to human
experts, but to "ground truth." Note, however, that this does
not mean that "ground truth" cannot be determined by human ex-
perts. Indeed, human experts are often required to determine the
correct or best answer. However, this determination is usually
made post hoc and is based on a great deal of information not
available to the decision maker during problem solving.

4.2 Other Statistical Procedures

One final comment. In this paper we have focused only on using
commonly used procedures from classical statistics. This was
done because most people interested in expert system evaluation
have some knowledge of these procedures. However, it is impor-
tant to note that the PU and PE measures do not presuppose these
procedures. For instance, recent developments in classical
statistics (Efron, 1982) might suggest the use of alternative
procedures that would result in a smaller confidence interval
around the difference between the means; resulting in smaller
confidence level estimates for PU. Similarly, procedures from
nayesian statistics could also be used to estimate these measures
(e.g., Winkler, 1972). Bayesian procedures would also result in
smaller intervals, since they would exploit the prior knowledge
that the difference between means is unlikely to be negative. We
are presently exploring the potential advantages of using alter-
native procedures.
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Introduction

During the last few months we have been conducting interv-iews with people in

the Army in the Washington D.C. area who have some experience in developing and

testing systems that employ artificial intelligence (particularly expert or

knowledge-based systems). The purpose of these interviews is to develop a com-

pendium of "lessons learned" in the areas of developing and testing knowledge-

based systems. These efforts are part of the second phase of a Small Business

Innovative Research Project sponsored by U.S. Army Electronic Proving Ground.

The objective of the first phase of the project (September 1986 to March 1987)

was to develop methods for testing and test evaluation that are appropriate

for C3 1 systems that employ Al. The goal of Phase II is to develop and

demonstrate guidance to aid In the testing of systems that employ AI. This

paper supports this goal by surveying and sharing the lessons learned by

people in the Army who are developing and testing knowledge-based systems, and

by recommending an approach to the testing and evaluation of expert systems.

Many organizations within the Army are involved with prototype systems; some

are operational, a few will be fielded, and even fewer are building up a track

record. This paper dt¢crlbes the state of the practice, shares the lessons

*To appear in Proceedings of IJCAI-89 cr -qj. j o.- t',nrrf 'on
Validation and Testing of Knowledge.Based S;,temu



learned, and offers some advice, based on the lessons learned, for developing

and testing operational knowledge-based systems.

The State of the Practice

We began by interviewing Army managers end developers in the Washington D.C.

area. The purpose of conducting the interviews was to collect and share the

experiences of managers, developers, and testers of knowledge-based systems,

and attempt to determine some recommendations for future developers and

testers on how to test knowledge-based systems. We are still relatively early

in the process of interviewing; the descriptions of Army systems and conclu-

sions drawn so far are based on a sample of interviews.

The interviews were relatively open-ended. The interviewees were asked to

provide the following information: a brief description of the system, why thelW

system was considered AI, information on how the requirements for the system

were specified, the use of experts (single or multiple) in developing or

testing the system, how the system was tested, and what was perceived to be

the greatest difficulty or biggest stumbling block.

KnowledLe-Based Systems in the Army. At first glance, there appears to be a

huge diversity of systems being used by the Army. Knowledge-based systems

have been applied to many different tasks, including battle management, haz-

ardous material classification, selection of appropriate contract clauses,

in-house support for medical research (human vaccine testing and immunization

scheduling), and assigning a rating for psychiatric disability compensation.

The knowledge-based systems are based on regulations and knowledge elicited

from single or multiple experts in the domain area. The size of the systems
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ranges from a number of small "in-house" aids that contain about 50 rules to a

very large system that has over 400 procedures, each containing its own set of

rules. The systems are designed to run on a variety of machines--personal

computers, main frames, Sun workstations, or Symbolics.

However, the systems are all quite similat in tLeiz goals. Most, but not all,

of the systems performed a support funiiýou iki an aL:a where che cosc of the

computer making a mistake was relatively low. Generally, the systems were

designed to fu:.ction as an aid to a person making a decision, rather than as

an actual decision maker.

Most of the systems we saw were developed by prototyping. For the most part,

requirements documents simply did not exist. Rather, the software either

evolved from an existing software program or was created informally to meet a

need of a particular department within the organizations. Typically the sye-

tems were developed using expert system shells (EXSYS, M-1, CLIPS) or in LISP,

which many developers see as a rapid prototyping language. When a system be-

comes a "final product," some developers see a need to convert it to another

language, such bs Ada or C. This conversion is a potential problem--one that

could be very expensive and even infeasible. Furthermore, the conversion has

implications for testing, since some of the testing on the original system

will need to be repeated on the final system.

Another problem that surfaced was the use of an expert system as a tutorial

ior a non-expert. One of the systems designed as a tutorial for non-experts

had limited capabilities. The system did not seem to teach the non-expert the

skiils necessary to become an expert, but rather gave the user "1 year of

experience 20 times."
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This brings up some of the differences between systems designed for non-

experts vs. those designed for experts. Typically both groups interface with

the system in a similar manner (answering a series of questions or making

selections from a menu), but the expert bases the information for input on

his/her knowledge of the problem area, while the non-expert irterprets the in-

put data from other sources such as invoices, billing statements, or patient

summaries. The difference in end users means that developers and testers need

to focus on different aspects of the system, depending on the end user. For

example, more emphasis may be needed on the interface, stress testing, and the

quality of the explanations when a system is designed for non-experts rather

than experts.

As stated earlier, most of these systems developed as prototypes. However, in

some eases there were plans to convert from the prototype to an operational

system. The requirements documents for these systems generally seem to focus

on system integration issues--such as access to large databases or converting

to a different shell, a different development language, or a different

hardware configuration--and not on issues relating to the expected performance

of the software. The lack of documented requirements and the "fuzzy" nature

of a knowledge-based system add to the difficulty of testing it.

Testing Knowledge-Based Systems. In asking what it takes to test a

knowledge-based system, we received a range of responses. Some think that

testing AI software is not any different from testing conventional software

("a rule base is just a structured database"); others believe that testing AI

software is very different and requires a multifaceted approach, to include

static testing, dynamic testing, multiattribute analysis, acceptance by ex-

perts, and questionnaires to users.
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Generally, issues concerning testing the expert system were not raised early

enough in the development process. Much of the time and resources was spent

on knowledge engineering and development. As a result, testing and documenta-

cion were crowded out. The emphasis seems to be directed at obtaining a

"product" and not at making sure the "product" worked as it should. Often

what the system should do was not clearly defined ui made explicit, which made

testing the system even more difficult. Other difficulties in testing

knowledge-based systems were the lack of well-defined standards to test

against, the lack of definition of an acceptable level of performance, the

complexity ot the knowledge base, and unavailability of experts for the

development and testing processes. The importance of test and evaluation to

the development of an expert system as well as to the ultimate acceptance of

the system by the user, sponsors, and organization must be stressed.

Test and evaluation is a critical part of the development cycle. The purpose

of test and evaluation is to ensure that the system can be used to solve the

particular problem or class of problems for which it was designed. Crucial to

the system's ultimate acceptance and use is that the system "prove" itself to

the community of users for which it is intended. Typically, an expert is

someone we trust to solve a particular problem because that expert has a track

record of successful decisions. An expert system needs to prove that it can

be trusted. Part of building that trust is providing evidence that the expert

system can solve the types of problems it is designed to and can be used by

the people who need to use it. A comprehensive and multifaceted approach to

test and evalu4tion is the way to provide that evidence.

An evaluation method tor expert systems should provide a means to rigorously

test the different parts of the system. The method should allow different
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aspects of the system to be weighed differently during various stages in the

expert systems life cycle. In addition, the evaluation criteria must be ex-

pressed in terms of attributes that can be measured, either objectively or

subjectively. Evaluation of an expert system should consist of the following

kinds of tests:

Structural Tests of the Knowledge Base. Static or structural testing is
concerned with examining the underlying structure of the knowledge base,
that is, the logical consistency and logical and functional completeness
of the rules. Tests for logical consistency are aimed at finding and
correcting redundant rules, subsumed rules, conflicting rules, and un-
necessary if conditions. Tests for logical completeness are for finding
unreferenced attribute values, illegal attribute values, unreachable
conclusions, and deadends in the knowledge base. Functional complete-
ness measures the extent to which the knowledge base addresses all the
domain problems that the users have to or need to address.

Content-Specific Tests for the Knowledge Base. In this type of testing
we ask the domain expert to make judgments about the accuracy and ade-
quacy of the embedded knowledge. The judgments can be elicited in-
dividually with single experts or using group techniques with multiple
experts. In this category of tests, the domain expert Is asked to as-
sess the accuracy of the facts in the knowledge base, the accuracy of
the embedded rules, the acceptability of the knowledge representation
scheme, the adequacy of the source, and the modifiability of the
knowledge base).

Performance Tests. Performance tests are aimed at determining how well
the system carries out its designated functions. These tests can be
divided into functions for which "ground truth" answers exists and those
for which no ground truth exists. Where ground truth exists, the per-
formance of the system can be compared with a known standard. Where no
ground truth exists, we must rely on the judgment of experts to assess
the quality of the conclusion. Performance measures should also include
measures of response time and time to accomplish the task.

Usability Tests. Usability measures incorporate a number of factors
that relate to how well the computer is adapted to the needs of the
user. Usability measures can be assessed by observation or opinion sur-
vey. Measures of usability that can be observed are the extent of use,
manner of use, and features used. Usability measures assessed by
opinion survey include confidence in system, ease of use, acceptability
of interface, acceptability of results, -cope of the application, ade-
quacy and clarity of explanations, and impact on organization.

Additionally, specific tests should be aimed at determining the correct-
ness of the inference engine.
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The characteristics or attributes described above can be put into a multiat-

tribute model for evaluating a knowledge-based system. Multiattribute

analysis provides an overall framework for evaluation of a system where mul-

tiple objectives are important (Ulvila et al., 1987). The multiattribute

framework in Figure 1 summarizes the characteristics of the evaluation

strategy described above.

As confirmed by the interviews, practice often differs from this paradigm. In

practice, the level of testing performed on an expert system seemed to be

driven by five factors: (i) the lack of information on testing methods and

tools; (2) time constraints; (3) resource constraints; (4) mission

criticality; and (5) whether or not the system functions as a decision maker

or as an aid to a decision maker. Table 1 describes some of the methods we

found that were used to test knowledge-based systems and shows where they fall

short in terms of the evaluation criteria specified in the multiattribute

model. The strategies are described in terms of level to which they address

testing the structure of the knowledge base, the content of the knowledge

base, performance, and usability. The level of testing is simply described as

one of four values--not addressed (NOT), low, medium, or high. High indicates

that a particular attribute was emphasized in the testing strategy, medium in-

dicates it was addressed but not stressed. A ranking of low indicates a low

level of attention to testing a particular attribute. NOT indicates that the

attribute was not explicitly addressed by the particular testing strategy.

Generally, the different strategies used to test the expert systems possessed

the same strergths and weaknesses. All of the testing strategies addressed

the content of the knowledge base, the correctness of the reasoning as well as

the answer. Testing was performed with the expert and attempts were made to
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Table 1: Testing Strategies and Level of Testing

Testing Strategy Level of Testing
- Show the latest version of the software Structure of KB: LOW

to the expert; Content of KB: LOW
- let the expert use the software; Inference Engine: NOT
- flag data outside boundaries: Performance- LOW
- the expert keeps a detailed log of things Correct Answer: MED

that go wrong and gives it back to Correct REasoning: LOW
developer. Usability: LOW

Fit w/Organization: NOT

- Test the system with the expert as it is Structure of KB: LOW
being developed; Content of KB: MED

- select a sample of test cases based on Inference Engine: NOT
actual data; Performance: MED

- have a panel of experts determine outcomes; Correct Answer: HIGH
- have the compucer determine the outcome; Correct Reasoning: LOW
- stop testing when the system reaches the Usability: LOW

same conclusion as the panel of experts 85% Fit w/Organization: NOT
of the time;
monitor the system as it is used--establish
a track record.

- Select test cases based on actual data (data Structure of KB: LOW
from a previous year where outcome is Content of KB: MED
already known); Inference Engine: NOT

- run test cases through the systei.; Performance: MED
- Check the output to ensure that it confotms Correct Answer: HIGH

to Army regulations. Output i• correct when Correct Reasoning: LOW
the system outcome conforms to a known Usability: LOW
standard (or regulation specifies what Fit w/Organization: NOT
should be).

- Test the interface with eventual users (does Structure of KB: MED
it work? does the sequence of questions Content of KB: MED
presented to the user seem logical?); Inference Engine: LOW

- check the rule base (are rules missing? Performance: MED
can some be collapsed? are there rules not Correct Answer: HIGH
being fired? are the rules correct--go Correct Reasoning: LOW
back to the expert); Usability: MED

- stress-test; Fit w/Organization: LOW
- change inputs;
- get outputs (are the outputs received in

a timely manner? are th- outputs reasonable
based on the expert's experiet,&e in the
domain area?);
lcoks sqtem effrn-iveness (f.s the operator
happy with the results? is the operator happy
with the explanation facility? does the
system fit in with the flow of the exercise?).
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Table 1: Testing Strategies and Level of Testing (continued)

Testing Strategy Level of Testing
- Select test cases that approximate the Structure of KB: LOW

actual population. The expert determines Content of KB: MED
the output of test cases without using Inference Engine: NOT
the system. The expert used the system Performance: MED
to obtain outputs (in this case, all of Correct Answer: HTGH
the expert's input data were saved); the Correct Reasoning: MED
intended users of this system were non- Usability: MED
experts that would be asked to interpret Fit w/Organization: LOW
data from summary forms. The saved input
data were later used in two ways:
1) to compare the expert's interpreta-

tion of data from summary sheets with
the non-expert's interpretation; and

2) to re-run the system after changes
were made to the rule base. The
non-expert ran the system with the
same set of test cases. The results
of the computer were compared to the
results the expert determined without
using the system. Testing stopped
when the expert aai computer agreed
80% of the time.

Establish test plan--multifaceted approach Structure of KB: HIGH
to include static testing, dynamic testing, Content of KB: HIGH
multiattribute analysis (for system Inference Engine: MED
performance), acceptance by experts Performance: MED
(feedback from outside expert as well as Correct Answer: HIGH
"developer" expert), and questionnaires. Correct Reasoning: MED-HIGH

Usability: MED-HIGH
Fit w/Organization: LOW

ensure the correctness of the embedded knowledge or rules. Many of those in-

terviewed commented that, although experts expected to be available to test the

software, they were not. If experts were not available to test the system, the

probability of failure was high. Most of the strategies attempted to test the

performance of the expert system but this was difficult because the expected

performance or measures of performance were not made explicit or documented.

Most of the testing strategies did not sufficiently address the structure of

the knowledge base, the correctness of the inference engine, or the usability
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of the system. No one addressed the fit with the organization well. Although

all of those interviewed examined t.ie scruetute of the knowledge base. The

examination of the structure was extremely difficult and time-consuming be-

cause of the lack of automated tools for static analysis. Clearly, the

testers and developers would benefit from the availabillty of automated test-

ing tools. Most of the peop].e realized the importance of structural or static

testing but, without automated tools, lack the resources or time to do as much

testing as they would like.

Most of the expert systems made use of one of the many expert system shells

available on the market, and no testing was specifically aimed at the inference

engine of the shell. Most assumed that, when they purchased a shell, the in-

ference engine had already been thoroughly tested. This may not be the case.

The literature on the subject indicates that perhaps only one inference engine,

CLIPS, has been formally validated. (In their article, "Expert System

Verification and Validation", Chris Culbert and Robert Savely of the AI section

at NASA/Johnson Space Center describe using conventional testing techniques to

validate the inference engine in CLIPS, an expert system shell.) Validating

the inference engine of a shell is especially important if a system is perform-

ing a critical function and the cost of an error by the system is high.

Because most of the systems were viewed as prototypes (designed to prove the

concept), other attributes, such as usability and fit with organization were

addressed at a low level or not at all. Lack of information or available tools

(questionatres and information on questionnaire design) may also explain the

lan.' cf e-irhsf, oi t3--e two attribtipes. Since most of the resources were

sunk into development, resources were not available to develop questionnaires.
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The testing strategy of changing inputs, obtaining outputs, and asking the ex-

pert if the results are reasonable may be appropriate for small, non-

autonomous, non-critical, in-house systems (where the cost of an error is

small) in environments where the developer and expert work closely together and

performance of the system can be continually monitored. However, when the sys-

tem is performing an important or critical function or where the cost of an er-

ror is high, more rigorous and formal testing is necessary.

Lessons Learned

Many of the lessons from the Army's experience in knowledge-based systems re-

late to requirt. nts and issues that were not raised early enough in the

development process. Emphasis was generally placed on developing a product

that could be seen, touched, and operated. As a consequence, documentation,

testing, and maintenance suffered. Table 2 summarizes the lessons learned.

Table 2: Lessons Learned

(1) Define the Problem
Issues/Question to Ask: Pick a subject that people in the organizations
really care about. Why is the system needed? What niche does it fill?
What problem does it solve? Make sure the relevant knowledge or infor-
mation is accessible.
Impact on Testing: Allows testers to know when the problem is solved.
Aids in determining if experts exist, who they are, and if they will be
available for testing.

(2) Examine Alternative Solutions
Issues/Questions to Ask: Al is one means to solve a problem. Ex-
plicitly consider the benefit and costs of alternative approaches. Ex-
amine the benefit and cost of a knowledge-based system versus the
benefit and cost of a conventional software system versus the benefits
and costs associated with no system.
Impact on Testing: Ask if the knowledge-based system performs a func-
tion that is important enough in the organization to allocate the neces-
sary resources for its development, testing, and maintenance (some of
the costs to consider are the expert's time, test case development, and
maintenance of the knowledge base). Will you need to purchase test
tools or shells? What will you need to support: the testing efforts?

-12-



Table 2: Lesons Learited (continued)

(3) Start Earl~y

Issues/Questions to Ask: Many managers ano developers of •nowlccge-
based systems feel a need to do more work earlier in the deveolpm.ent
process. Start answering early the following kinds of questions-
* What do you want the sysrew ca do? What are the system s limita-

tions?
* At what frequency will t -Y svctem he used?
0 Is the system important iot the user or organization to pertorm

its mission or do its job?
0 Who will maintain the system?
• How will the system be tested?
* Do you have the necessary resources to support testing and mair-

tenance?
* What are the milestones along the deveiopment pathe
Impact on Testing: Work out the logistics of testing--who wili test,
what will be tested, where will testing be done, when will testing 1~g,
and end, how will it be tested? 3efine the expected performance of the
system. Define milestones so that testing at various stages in develop-
ment provides useful feedback to the development process.

(4) Define the End Users
Issues/Questions to Ask: Who will benefit most from the system? In-
volve the end user in the design, development, and testing processes,
Impact on Testing: The selected end user has implications in how the
interface and explanation facility should be designed and tested. In-
volving the end users early increases the probability that the users
will accept the system.

(5) Commit the Necessary Resources
Issues/Questions to Ask: It is easy to underestimate what it takes to
complete the job. Anticipate false starts. Knowledge engineering may
take longer than expected.
Impact on Testing: Without the necessary resources, such as the
expert's and user's time, the software may not be accepted by the users
and the project is likely to fail.

(6) Investigate Shells
Issues/Questions to Ask: Different shells have different strengths;
pick the shell 1,esr suited for rhp problem at hand. An expert system
shell may not be appropriate given the size or expected performance of" a
system. Understand the capabilities and limitations of the !hell.
Tools that help in determining which shell is best suited for a par-
ticular application would be beneficial.
Impact on Testing: Tests specifically aimed at the functioning of the
inference engine may be important for mission critical systems or sys-
tems wheLe the cost of a computer error is high.

(7) Get the Expert's Time
fssues/Q,,estion to Ask: Make sure an expert exists. Get a commitment
from management to make that expert available. Make sure the expert is
willing to cooperate (may lack incentives). When using multiple ex-
prt-- h f-v r!valry na.d differing to higher rank.
Impact on Testing: The expert must be available for test case genera-
tion and assessing the adequacy and accuracy of the embedded knowledge.
Keep the expert involved in development and testing. Show the expertthe results of his knowledge on a prototype (good for self-esteem and

may precipitate usefuL CZcia.).



Table 2: Lessons Learned (continued)

(8) Define Performance Mesures
Issues/Questions to Ask: Explicitly define performance measures.
Document the following:
* Computer Aspects: What are the hardware requirements, the space

requirements, the machine capacity? What are the data require-
ments? Does the system need to be ported to other hardware con-
figurations? How fast does the system need to run? What are the
formats of the input data?

* The input domain and limitations of the system.
* Expected Performance. Can we measure the system's output against

some ground truth or does it requirement judgment? What do we ex-
pect in terms of response time, quality of the answer, quality of
the reasoning?

* Usability: How much do we expect the system to be used? Does it
fit in with the way tne organization does business? What features
do we expect the system to provide? Which features are most im-
portant?

• The Intended User: Who is the intended user? What are the skills
required of the user? What level of explanation is required?

Impact on Testing: These issues are critical to the testing process.
Defining what is expected from the system allows the tester to know when
the system "passes" the tests.

(9) Establish Priorities
Issues/Questions to Ask: Explicitly prioritize the various attributes
based on their relative importance.
Impact on Testing: The explicit prioritization provides a useful means to
decide which aspects of the system require the most comprehensive testing,
especially given time and resource constraints. For example, a system
with a large and complex knowledge base designed for a "computer literate"
expert should employ a different testing strategy than a system designed
for a relatively "computer illiterate" non-expert. In the latter case,
testing should emphasize the interface with the user and the sufficiency
of the explanations and, in the former case, testing should emphasize the
completeness, consistency, accuracy, and adequacy of the knowledge base.

(10) Test the Knowledge Base
Issues/Question to Ask: Comment the rules; indicate their sources. Ex-
amine the premises, not just conclusions.
Impact on Testing: Investigate the static test tools to exercise the
knowledge base. (There seems to be a strong need for "generic" tools or
a library of routines that test the various aspects of a knowledge base.
Most of the "testing" currently being performed in the knowledge base is
being done by hand and those testing knowledge-based systems would
benefit greatly from the availability of such tools.)

(11) Establish a Track Record
Issues/Question to Ask: Keep a library of cases presented to the sys-

tem. Monitor the performance of the system over time.
Impact on Testing: A library of cases allows for regression testing--
re-testing the system after changes have been made to the knowledge
base.

(12) Instill Order
Establish a set of AI products (tools, shells) to use in an organization
and provide training. Establish training materials that help people
select valid AI projects.

-14-



To date, successful applications seem t.o be limited in scope and solve relarively

well-defined problems. SomT cf the ý- we talked !o i.need tr, think that the

future of Al in the Army is in "lirtte modules of AI" as part of f !,c>rr• t•cms,

rather than large Al systems. Generally, prototypes are regarded a- useful and

valuable for "studying the problem" b'.it do not necessarily lead tc -'zioruA

systems. Prototyping may be tkdin. ze thnar. _o.. ..tap or. tn• .a, zc' d.aiig

system requirements. To develop operationai, usabie and testable systents, the

Army needs to work harder at answering the difficult questions up front, to ex-

plicitly define the c..}, __ (h7 applict Lon. aoe iup.1t dcimain, tie Limitatiuns

of the system, the vxpected level of performance, the usability re'uie,ne! : :-d

to rigorously test those aspects of the system. Without rigorous testing, a sys-

tem cannot be a reliable and useful contributor to the Army's mission.
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ABSTR NCT

This paper presents the results of an ongoing project to develop methods for testing knowledge-based
systems. Results from four lines of inquiry are presented: a compendium of lessons learned from tcting.
quality metrics, a multiattribute utility hierarchy, and a Test Technology Program. The results of a personal
interview survey of the testing practices oi knowiedge-based system developers in the U.S. Army are presented.
These irclude: a characterization and critique of common testing strategies, an mia!vsis of facto-s affectint
testing, and a presentation of lessons learned. Metrics for characterizing the quality of knowledgc-bastcd
systems are described. A comprehensive approach to assessing knowledge-based systems quality kisne on
multiattribute utility analysis is described. The general state of testing for knowledge-based systems and
artificial intelligence is described, and a comprehensive Test Technology Program is outlined.

1. INTRODUCTION

We are currently under contract to the U.S. Army Electronic Proving Ground to develop methods for
testing systems that employ artificial intelligence. Our two-and-a-half year research and development effort will
be completed by September 1990, and this paper summarizes a portion of our work to date. The major focus
of our research has been on testing knowledge-based systems or expert systems, and we have found that such
systems present some unusual problems for testers due to aspects of their typical development process and due
to their intended uses to support human decision making.

The paper is organized as follows. Section 2 presents the results from a personal interview survey of the
testing practices of knowledge-based system developers in the U.S. Army. Section 3 presents a multiattribute
utility framework for knowledge-based system quality metrics. Section 4 proposes a comprehensive Test
Technology Program.

2. COMPENDIUM Or LESSONS LEARNED

This section summarizes the findings from a personal interview survey of the testing practices of
knowledge-based systenm developers in the U.S. Army The findings include a characterization of ýommon
testing strategies, an identification of factors that affect testing, and an expression of lessons learned. More
details on these findings can be found in Constantine and Ulvila (1989, 1990).

2.1 CHARACT"PRIZATION OF COMMON TESTING STRATEGIES

Our survey identified eight strategies that are commonly ,ised to test expert systems.

"i &is work was supported by ,he U.S. Army Elctronic Proving Ground under contract number DAEAI8-. 88-C-0028. The views, opinions, and/or findings contained in this report are those of the authors and should
not be construed as an official Department of the Army position, policy, or decision unless so designated by
other documentation.

*To appear in the Proceedings of the Test Technology Symposium III, Laurel, MD, 19-21 March 1990.
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(1) Prototype Forever. The expert receives the latest version of the software and uses it in an actual
setting. The expert monitors the system in use and provides feedback on the interface, the explanation laciliv..
and the reasonableness of the system's outputs over time.

(2) Agreement. As the system is being developed, it is tested with the expert. When an initial version
of the system is complete, a sample of test cases is selected based on actual data. The test cases are given to
an expert or a panel of experts who are asked to determine the outcome. The same set of test cases is
presented to the system and the system determines the outcome. The system passes the *test' if the sstem
and panel of experts agree on the outcome for some percentage (e.g., 85%) of the test cases. The s..tem is
put into use and monitored over time.

(3) Compliance. Test cases are selected based on past history. Those cases are presented to the system.
the system's performance is compared with the historical results, and appropriate changes are made. Another
set of test cases is selected from current data where the outcome is not yet known. These cases are presented
to the system and the output is correct if it complies with the relevant regulations.

(4) Satisfaction. The developer examines the knowledge base for missing rules, rules that can be
collapsed, and rules that are not being fired. The expert subjectively assesses the correctness of the rules, the
quality of the explanations, and the quality of the answers. The user assesses his or her ability to interface
with the system, the timeliness of the response, the reasonableness of the outputs and explanations, and how
the system fits in with the operating environment.

(5) Case-Dependent. The developer examines the knowledge base, assesses the effect of adding rules,
determines if rules can be combined, and looks for errors. A large sample of test cases is selected that
approximates the population of cases the system will receive. The expert assesses the answer to test cases
without using the system. Then, the expert uses the system to obtain outputs (all of the expert's actions are
saved). The saved data reflecting the expert's actions are analyzed and changes are made to the knowledge
base. It is necessary for the expert and system to agree some percentage (e.g., 80%) of the time. The system
is then tested with the non-expert users. The non-experts interpret the input data from summary sheets and
the differences in data input between the expert and non-expert are examined and appropriate changes are
made to the system.

(6) Organizariona/ Testing. The interface is iteratively evaluated by the user. Interface evaluation
includes an assessment of screen design, feedback message placement, scrolling, features, menu naming, design,
and actions. The system is evaluated in a classroom setting by observing the system in use and administering
questionnaires. Observers videotape and take notes to assess how both students and instructors use the system
in an actual classroom setting. Questionnaires are administered to both students and instructors to gather
information regarding features used, perceived usefulness, perceived problems, and general feelings. An
experiment, using subjects in an actual classroom environment, is designed to assess the effect of using the
system on student performance.

(7) Field Testing. Each prototype is tested with past cases from saved actual data. The system is tested
in a similar operational environment for several (e.g., 3) months to obtain feedback on system effectiveness and
user interface. Appropriate changes are made to the system. The system is then run in parallel with the
existing process in the intended operational environment for approximately one year. During the parallel test,
assessments are made as to how well the system is meeting the goals stated in the requirements document.

(8) Multi-Faceted. The developer performs a comprehensive static analysis of the knowledge base using
automated tools. Dynamic testing is performed to test the system with the expert using a comprehensive set of
test cases not used in development. Multiattribute analysis is used to obtain subjective measures for system
performance. The system is tested with "developer* experts as well as outside experts. Questionnaires are
administered to both developer experts and outside experts.

2.2 FACTORS THAT AFFECT TESTING

Generally, the level of testing performed on knowledge-based systems seemed to depend on four factors:
information available on testing methods and procedures, time constraints, resource constraints, and W
characteristics of the development environment (such as formality and accessibility of the developers to the
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users). Tyixcaity, WVzut tilt n w'rVe0:Cx '11" ~ fr.ot- %/iUot te iioýtrp t:u; u

and the developer worked wmth ine user ;o imp~emnr.: in-- requrea sottware c-nanges on an ^as nteat•ex",

At some level, all of the common testing strategies addressed correctness of the answer and co•.et-
the reasoning. All of tne systems were judgc4 against some stanOtrd, aidlougn Li maiy cas:, nat s. int:tr %X
simply a vague notion of 'correctness. For example, in agreement testing. the system's ou•put wA % a',t-3n-v i

"correct" if it agreed with the outcomes specified rv a panel of experts for 85% ot the test eiases. .n c.
dependent testing, great care was taken to select a 3et cf test cases that approximuted tiýe hi. M. : ',e
system would be expected to handle in an ot'r"tiom.l en-,ironment, but all of the cast. 'vF- i,,
also used in developmenL it. fe.ld tvtiag, the. sysitm -, tidged *corre.t' if it met a few peuior a -
Isuch as a 30% red,-cticn in downtime) speciLdd t2 a z•-%_'reratents !oc:i.

In one particular project-an inteligent tutorinF syst-co~ ectns wS niot .:s k WpoWaat ,.

reasoning, ,.snbtibity, or how well the system fit ;nL, uv ir.tlrc4 (oprat•-. a3a cnvjrnr1••,. U
organizational testing because strategies like *agreementO and "compliance' did not sufficiently address eithcr
usability or fit with the organization.

Manti of the testing strategie- (plototype, tforever, ag-eemerit, and compliance) focuset cn the output
the system aacd di. not directly atiuicss ckulci the zP!r'ý-ure or int cut es :.r ý.,.owicoge Dase,. iAlnou"n thne
satisfaction and case-dependent strategies address ihnŽ s',rucuwe an, contv-i '-,f ; i-. ".-vwledee c.-ce i'i,_dr-
argue that they do so insufficiently due to the lack of avtomated tools for ,ztatic analvsis. Most ot the
developers realized the importance of st;xctudai ou static testing, but without a-itontated to.--L% ':kd tvi-
resources or time to do as much tisting as they would have liked. Only the multi-faceted testing strategy used
an automated static analysis tool, and it was developed especially for the particular application.

Most of the knowledge-based systems made use of one of the many expert system shells available on the
market, and no testing was specifically aimed at the inference engine of the shelL Most developers assumed
that, when they purchased a shell, the inference engine had already been tested thoroughly. This may not be
the case. The literature indicates that perhaps only one inference engine, CLIPS, has been formally validated
(Culbert and Savely, 1988).

The testing strategy of changing inputs, obtaining outputs, and asking the expert if the results are
reasonable may be appropriate for small, expendable, non-autonomous, non-critical, in-house systems (where
the cost of an error and the cost of the system are extremely low), in environments where the developer and
the expert work closely together and the performance of the system is continually monitored. But be prepared:
this system is likely to remain a prototype forever. When a knowledge-based system is to be used by a large
number of individuals, replace an existing method for solving a particular problem, perform an important or
critical function or where the cost of a system error may be high, more rigorous and thorough testing is
necessary. One approach for more comprehensive test and evaluation is the multiattribute framework
described in Section 3.

2.3 LESSONS LEARNED

The same difficulties were encountered by many knowledge-based system testers. These inclued:

"* issues concerning or affecting testing were not raised early enough in the development process:

"* in a resource-constrained environment, it was difficult to test thoroughly;,

" the intended purpose or function of the knowledge-based system was not defined clearly or
explicitly,

"• static analysis tools were unavailable for testing a complex knowledge base;

* experts were unavai4:,ie during testing.

Listed below are some of the lesso;, learned and suggestions for developing testable knowleO,-basee-
systems.

3
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..' Ls •lm o•. .: "b ,,t;cn w ;i-:.t al ct tri a r ,,k: .

WCt ýrSIe ftli S,0UIUd uC. , . z . .tL; tUttiC Lt !o 110 U - L i.. i,. :.. WIt t1; , ;,A VO..,pt i ( -t ..

"oV •Iat , .... t atc i. ,o wcnerate rquirement. (iContsarý ine anti ut it pI.' ,tpo-e aii uit!.: t 4
reAquite~nt, feneraiion prrcess.)

(2) Givet the knoK tedic .base4 system an appr-naceship pnrowd in the intended .'4peratniv env'zromenrt. Keep
a library of cases presented to the system, observe the system in use, and mnomtor its performance. An
apprzntiicesiiip w~rizi:;.,d '*ýZ ýn'•zpfmll; fo0: Is,,wsing t,:,v :, ¢ tc• ,t 'm -t -rton-i "'i n ( 7x*z:t;.

,'avironment and for tinolg c-,ors not fouled in PTCeviOUs ttVinDV eltfris.

(3) Instill order. Establish a set of products ktols, shuils) to use, prcvxk it. inintr, ar, . your ..

tools to support testing if the vendor will not provide them. Automated tools for static analysis are cssential
for testing a knowledge base thoroughly and should be available to the developers of knowledge-based system.•.
Since there are no industry standards for knolw.lge-base sitnems, spevfy formau, iaming con~entions,
procedures for commenting rules, and other programming standards for developers in a particul..r organization
to use when building knowledge bases and knowledge-based systems.

To date, successful applications seem to be limited in =pe ant solve relative~v well-defi-ci prnW

Many of those interviewed indicated that the tuture of Al is in little modules of All as part ot larger ,
rather than large Al systems. Generally, prototypes were regarded as usetui and va'uabla tot studynS the
problem" but they did not necessarily lead to operational systems. Prototyping may he nothing more than one
step on the way to defining system requirements. To develop operational, usable, and testable systems,
developers need to work harder at answering the difficult questions up-front, to define explicitly the scope of
the application, the input domain, the limitations of the system, the expected level of performance, the usability
requirements, and to rigorously test those aspects of the system. Without rigorous testing, a system cannot he
a reliable a-id useful contributor.

3. A MULf £ YP1131tB j•.ILIfY U'ltir'RArY OF QUi 1 •rkzr : 0-1

3.1 THE MULTIATIrRfIJTE- U'i'ILTY H[-kl,(l' t :1H-I

Multiattribute utility (MAU) analysis is 1 rrcthicd V Drovids 'i r att h ;:7.tzct!h 31 0 -oriate procedure
for assessing values with multiple effects (see, e.g., Keerey and Raiffa, 1976). As arpplied to testing knowledge-
based systems, MAU provides a framework for representing, in a hierarchy, the many features and criteria
appropriate for judging the qtwLity. acceptability, and stren-.rhs and weakn'-,4m o& kniowied ve-hfsed systems.
The MAU framework presented in Figure 1 shows our proposed list of quality factors for testing knowledge-
based system software. More details on MAU analysis, the hierarchy in Figure 1, and the quality metrics are
contained in Adelman and UI,!ila (forthcomnl.

3.2 QUALITY METRiC.i

The following paragraphs provide brief definitions of the quality metmcs that are represented as attributes
in the nietarclj.

Logical Cor.wistency. Re. midant ru'es ar, rult4 or uonp% o0 rtle-i tat hat , ek!entaiilv mre aanc

co'icitti s .".no cnclusnori-. .oJuntianc" c::ti 0. to dlea'icatt s o• eO tInc cre- tien c. e,; A:v:.;1=t iules ultr
groups) *i-, " ' ,T('t nt -ndr3LC , ' _c: , ` amt.•i ; h : ,-, i tieý. or Ire o ,Iil iT , c-: ,.! ý',: C1 0C:.e•;
Subsumxi rtuies Occar wAle- ,r:', ruiie'i (of 1xrItp ti rjlcsi reaniry+ !S atI.t '.ueii i- r atr:cr rufil
ioup ot i acs) that reaches ,he- same co-cluszit tr~ri simiar i'i i:c re..rictuie t meiric L;. '.on~ l i1,

combination violates trinciDles o1 loric (e... transiuv~tv). tircular rules ate tulei tmat i.ýad ore nack to a:o
ii:mai ,:" ntertnedzaite) corllitcn itwearl of a rc.nctusioz•,

Logical Competentess. Unreferenced attribute vaiues are values on a canoitton rmat nr t aclinecAe,

ýInt -r- ,',tide tre ac-entihl' ;e,, or r-rpe Mf -ahiiet fnr atlt rnuii.•i I At . L : t . . 1'. ij:r
conclusion that cannot be tygmev_-" : -. ., 1A .. .. .. '. -' .. . , .. .
connect input conditions with vzý L ,,-ti-ior,
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need to be. addre&SL.U. A ;• -iiiu.. u• on cIph ...1  , .. ',<ed t .ii , . I ,,i : , '

conc!usiops th;t nc&e. io be addressed. Identified knowledge :;mitations: 1he r,.:,-., in the kn(:,%%ý:l~e ti,'," u:
tel) the user if input conditions currently being processed cannot be addressed. A7!Iogously, if the ex.wrt
Yyytron .is ich itat a UZA:1 -ail specily a conclusion in utder o iti:l, "--c Liiput c.uatiiuob Ji.,ut "uild 4s; Cla;
it, an expert s)stem that was knowledgeable of its limitations would tell users if a conclusion currently being
processed as input could not be addressed.

Knowledge-Base Cortient Acciracy of facts: the o ia~iV' of the ur.cnditonai statements in the ,.-wledgc
base. Accuracy of rules: the quality of the conditional statements in the knowledge base representinj :-[p.rt
judgment Knowledge representation acceptability: whether or not the scheme toy riplc iilum kc.l.:';e is
acceptable to other domain experts and knowledge engineers. Adequacy of source: the quality of the persons
or documentation used to create the knowledge base. Modifiability of knowledge base: the extent to which
the knowledge base can be changed.

Inference Engine: the extent to which the inference engine provides error-free propagation of rules,
frames, probabilities, or other representation of knowledge u, uncertainties used in the s'stem.

Computer Sstem. Design: the extent to which the expert system runs on the approved computer
hardware and operating system and utilizes the preferred complement of equipment and features. Portability:
how easily the expert system can be transferred to other computer systems.

Computer Usage. Set-up time: the amount of time required for the computer operator to locate and
load the program (if any) and the time to activate the program. Run time: the amount of time required to
run the program with a realistic set of input data. Space requirtments: the amount of RAM and disk space
required by the program. Hardware reliability: the peircent.zge 'f time the comnuter system could be expected
to be operating effectively. Hardware capability: the comptter tivstem's total amount of RAM and disk space.
Effect of feature use/jumping: the extent to which moving iont various paris of int. piogidt, JstiSC i. ,s.
D~egradation: how well. the poi~msaves daut J a .rdp.i Z .. i~r 1 e .

program or system crash or power outage. Handling input errors: the extent v, which 1hi" pr'vram pr,'hhbitts
program crash and tells the use; what to do after an input mistake.

System Integration. Formats: the extent to which the program uses input and output formats that are
consistent with the intended use. Data requirements: the extent to which the program's data requirements are
consistent in content, quantity, quality, and timeliness with those available to the intended user organization.
Documentation: the adequacy of material regarding the program's use and maintenance. Skill requirements:
the extent to which the program can be operated by appropriately skilled individuals.

Performance against Ground Truth. Speed: the amount of time it takes a user working with the expert
system to solve representative problem scenarios. Accuracy: the degree of overlap in the distributions of
belief values when the hypothesis is true versus false (see Lehner and Ulvila, 1990). Bias: the difference in
the proportion of false negatives (hypothesis is true but system says false) to false positives (hypothesis is false,
but system say it's true) (see Lehuer and Ut.la;lu, 199).

Judgmental Performance. Re.sponse time- the judgmerLs of uv.:rs regarding mw adelqu:.-c of the amount
of time the expert 3"sstetin t-.V v." ct tn inp,.'s. Tim: ir. acco•pirish task: :*,Z judgrncr' of users regat'ding
the adeo"j-;f-. --f the~ armon: -f liri ý _ w''m - :' ''" sing i!" ''c'Nt ~ m ! Q ty of
answers: the judgments of users and experts regaiding the system's capability. Qualhty of reasons: the
judgments of users and exp':rts regarling the ad,-qimy of the system'. iu;tification for iL. ans,.vcts

Observable Usability. Extent of use: how much users emplov the expert system to pertorri the Last:.
Manner of use: the imay in which users employ The syxtZ1 4tiu ,' : ........ . , CSS

different modules, the way that intermediate and final out-tits are incWrporarc. ,'mr ', ' kr,. ,;uIt". aid %Imc
use of interfaces. Features used: the extent to which different aspects of the expert system are employce by
users.

Opinions about .rabiluy. :......... .,users iei m g act~i.. - on woi
the expert systcm. Ease of use: how eusy users judge the system is to use alter they have compaete-,
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and become familiar with the system. Acceptanj'.Y 01 p'1ivmnm/machne '•nenucwa process: the extent to which
users assess that they and the system are performing tue tasks or activities tor witch they are Dest suited.
Acceptability of results: the users' judgments regarding the adequacy of the system's capabdtiv. Acc.zptability
of representation scheme: the users' judgments regarding the adequacy of the system's way of presenting
knowledge. Scope of application: the users' judgments regarding the adequacy of the expert system in
addressing domain problems. Adequacy of presentation and trace: the users' judgments regarding the
acceptability of the sr. tem's presentation of its reasoning process. Transparency of expert system: ttic extent
to which the system's reasoning process is clear and understandable to its users.

Organdakwial Impact. Impact on work style, workload, skills, and training: the judgments oi users
regarding the impact of the expert system on how tacy do their job, or the skills, and traininf rTcqlircd to
perform it effectively. Impact on organizational procedures and structure: the judgments of users regarding
the impact of the expert system on the organization's operations. Input-output: the users' judgments -
the adequacy of all the expert system's displays except those tracing the reasoning process

3.3 USING THE METRICS AND HIERARCHY IN TESTING

The basic approach to using the MAU hierarchy in testing knowledge-based systems is to assess ta::
performance of the system along each of the metrics, determine the relative importance of the metrics, ?nd
combine these factors in an overall characterization of the system being tested The detailed nri"e4'irt. *,ir

applying the method are beyond the scope of this paper (see Adelman and (lvila, forthcoming), but tlt,
following gives some idea of the kinds of techniques that can be used.

Depending on the metric, technical, empirical, or subjective methods might be used. Technical methods
are often used in static software testing to characterize the knowledge base and perform tests for logical
consistency and completeness. Technical methods can also record the physical parameters of the dynamic
operation of the system, such as speed and computer usage. Empirical methods determine objectively
questions of fact. These methods could be used to assess performance, content, and observed usability.
Subjective methods rely on judgments for assessments. These could be the judgments of experts (e.g., on
performance) or the judgments of users (e.g., on usability). Specific techniques for eliciting judgments,
including the use of questionnaires, are presented in Adelman and Ulvila (forthcoming).

In order to provide overall or summary assessments of the performance of the systc.,i being tested,
assessments are needed of the relative importance of the various measures or criteria. Where these
assessments come from depends on the circumstances of the test. In many cases, it may be appropriate for the
Program Manager to indicate the relative importance of the criteria. In other cases, guidance might be given
in a requirements document. In some cases, the tester may have to use what information he can gather to
infer the intended use of the system and assign relative importance weig .ts himself. Adelman and Ulvila
(forthcoming) suggest different sets of weights based on the intended use of the system.

Combining the asseasments of the performance of the system against the criteria and the relative
importance of the criteria, the tester can make assessments of the system at any level in the hierarchy.
Sometimes this assessment is aided by introducing some fictitious systems as reference points (see Ulvi'L ýit oA..
1987). For example, a 'passing score" might be hypothesized for each measure. The system can then be
compared measure-by-measure against this hypothetical *passing" system as well as overall (e.g., if the tested
system performs better in some areas and worse in others). The hierarchy provides a consistent and structured
framework for encoding engineering judgment. The application of the method is facilitated by the computer
support system that will be produced in our project.

As a parting thought on the hierarchy, we offer the opinion that an eclectic approach to testing,
combining technical, empirical, and subjective methods, is the most effective. As Riedel and Pitz (1986) point
out, many people erroneously assume that objective, empirical measurement is the most valid and, therefore,
preferred type of data to collect. However, the preference for a particular type of data depends on the relative
importance of the criterion being measured by those data. If the system's performance in solving test cases is
the most important criterion, then objective empirical data will be the most important type of data to collect.
However, if the user's opinion of the expert system is the most important criterion, which is often the case for
systems designed to assist experts, then subjective data will be the most important type of data to collect.
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Moreover, aV;.gaion of aA Lhz? test data to make . I. . -•t . L, .s•. euts ot i: ,:xt>crt system '
subjective judgment.

4. A TEST TECHNOLOGY PROGRAM FOR ARTIFICIAL INTELLIGENCE

The last few years have seen an explosion of interest in testing artificial intelligence and knowledge-based
systems. As one indication, over 95 papers have appeared on the topic since 1987. However, there is still a
long way to go for the testing of artificial intelligence (Al) and knowledge-based systems to reach the level of
conventional software testing. This section sketches the components of a test technology program, Whý' h ,A)uld
substantially advance the science and practice of testing Al.

(1) Assess and codify the state-of-the-artit testing. The Al testing community needs to continue its
efforts to get its arms around all the diverse Al testing activities. This requires a comparison and contrast of
activities (a) within a particular activity area (e.g., various static testing approaches), and (b) across areas (e.g.,
static testing vs. dynamic testing vs. use of experts vs. experiments, etc.). We can easily imagine task forces
within and across activity areas, with the result being a major reference work in the field for years to come.

(2) Develop Al testing laboratories. There need to be empirical evaluations of alternative testing
approaches (and products) within and across activity ares , as well as of completed expert systems and expert
system shells in order to assess their adequacy. The Army may want to set up government or commercial
laboratories (with no vested interests, e.g., not at product vendors) whose mission is to perform such empirical
evaluations. It may be most cost-efficient to have different laboratories specialize in different areas, although
this may be premature at this point.

(3) Package Al testing approaches and products for Anny personnel. A significant effort is required to
transfer Al testing technology to Army personnel, and that effort needs to be managed carefully since items I
and 2 above have yet to be performed. Elements of this include a training program with courses and a place
where testers can get hands-on experience, computerized support, and texts.

(4) Direct efforts toward assessing the value of zntegratirg Al testing into the developmrnt procefs. Is: I.
often argued that such integration will result in better Al systems and redured development costs, but we are
not aware of any empirical studies testing this hypothesis. This could be the first step of a larger project to
get testers involved earlier in the development process, to ensure that things such as requirements documents
are produced to aid in testing. Managers have to be shown that this involvement is worthwhile, however.

(5) Direct efforts toward assessing the relative effect of knowledge elicitation techniques, domain experts,
knowledge engineers, representation schemes, and problem domains on knowledge-base quality. It seems quite
appropriate for the Al testing community to evaluate the adequacy of the methods that go into building an
expert system, not just the finished products (i.e., systems). This would be a major undertaking but especially
important if Al is here to stay (e.g., see Adelman, 1989). This would also include the development of testing
techniques for 'funny logics' (4-valued, non-monotonic, possible-worlds, probabilistic) where appropriate tests
do not always exist. Present techniques are focused primarily on rule-based systems (possibly with extensions
to frames) and techniques may be needed for other types of systems.

(6) Develop testing tools. The five items above are directed at the *science" of testing Al. This item is
directed at the 'engineering." Tcxis are needed that get enisting methods into the hands of tcstcrs. These
include-

* static knowledge-based testing tools-for rule-based logics, frame-based logics, at:d othei logiP.i

" a 'requirements' generator-an automated system that will help a tester generate a requirem,-Nt,:
document from an examination of the system;

"* benchmarks and other testing tools for shells and inference engines;

"* simple dynamic testing tools (e.g., to keep track of what ifs going on during the running of the
systemd)-sgain availabte .or purumtase ana use;
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comprehensive tools- such as extensions of the multiattribute utility anairis tool mentioned in
Section 3:

integrative tools to tie other tools together.
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